中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉末冶金法制备Ti4AlN3及其性能研究

郭辉 李喜坤 宋园园 孙骞 黄轶文

郭辉, 李喜坤, 宋园园, 孙骞, 黄轶文. 粉末冶金法制备Ti4AlN3及其性能研究[J]. 钢铁钒钛, 2021, 42(5): 47-53. doi: 10.7513/j.issn.1004-7638.2021.05.008
引用本文: 郭辉, 李喜坤, 宋园园, 孙骞, 黄轶文. 粉末冶金法制备Ti4AlN3及其性能研究[J]. 钢铁钒钛, 2021, 42(5): 47-53. doi: 10.7513/j.issn.1004-7638.2021.05.008
Guo Hui, Li Xikun, Song Yuanyuan, Sun Qian, Huang Yiwen. Preparation and properties of Ti4AlN3 by powder metallurgy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 47-53. doi: 10.7513/j.issn.1004-7638.2021.05.008
Citation: Guo Hui, Li Xikun, Song Yuanyuan, Sun Qian, Huang Yiwen. Preparation and properties of Ti4AlN3 by powder metallurgy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 47-53. doi: 10.7513/j.issn.1004-7638.2021.05.008

粉末冶金法制备Ti4AlN3及其性能研究

doi: 10.7513/j.issn.1004-7638.2021.05.008
基金项目: 国家自然科学基金项目(51274143)
详细信息
    作者简介:

    郭辉(1997—),男,内蒙古乌兰察布人,硕士研究生,主要从事先进陶瓷材料的制备、加工和应用的工作,E-mail:gentgh@163.com;

    通讯作者:

    李喜坤(1971—),男,辽宁沈阳人,博士,副教授,主要从事先进陶瓷材料的制备、加工和应用的工作,E-mail:kunxi@163.com

  • 中图分类号: TF124,TF823

Preparation and properties of Ti4AlN3 by powder metallurgy

  • 摘要: 采用粉末冶金法制备 Ti4AlN3三元层状金属陶瓷,研究不同的原料粉末、烧结温度和保温时间对其纯度的影响。利用X射线衍射仪(XRD)对烧结试样进行定性分析,并基于Rietveld法完成TOPAS定量分析,扫描电子显微镜(SEM)和能谱仪(EDS)分别表征Ti4AlN3的微观形貌和微区成分。结果表明,以Ti、Al和TiN 粉末为原料可以制备高纯Ti4AlN3块体。当保温时间为2 h、烧结温度1400 ℃时可制备出纯度较高(wTi4AlN3=98.03%)的Ti4AlN3陶瓷;与其他MAX相相比,Ti4AlN3的硬度较低,试验中随着载荷的增大,硬度值趋近于2.8 GPa。
  • 图  1  以2Ti/AlN/2TiN为原料烧结试样的XRD图谱

    Figure  1.  XRD pattern of the sample sintered with 2Ti/AlN/2TiN as raw material

    图  2  以Ti/Al/3TiN为原料烧结试样的XRD图谱

    Figure  2.  XRD pattern of the sample sintered with Ti/Al/3TiN as raw material

    图  3  不同烧结温度下试样XRD图谱

    (a) 1 300 ℃;(b) 1 350 ℃;(c) 1 400 ℃;(d) 1 450 ℃;(e) 1 500 ℃

    Figure  3.  XRD patterns of the samples synthesized at different sintering temperatures

    图  4  不同烧结温度下Ti4AlN3的质量分数

    Figure  4.  Mass fraction of Ti4AlN3 at different sintering temperatures

    图  5  不同保温时间下试样XRD图谱

    (a) 0.5 h;(b) 1.0 h;(c) 2.0 h;(d) 3.0 h;(e) 4.0 h

    Figure  5.  XRD patterns of samples with different holding time

    图  6  不同保温时间下Ti4AlN3的质量分数

    Figure  6.  Mass fraction of Ti4AlN3 at different holding time

    图  7  Ti/1.2Al/2.7TiN在1400 ℃下保温2 h烧结试样的断面SEM图像

    Figure  7.  SEM image of cross section of Ti/1.2Al/2.7TiN sintered at 1400 ℃ for 2 h

    图  8  图7中不同选区的EDS能谱

    Figure  8.  EDS spectra of different selected areas in Fig. 7

    图  9  维氏硬度随载荷变化曲线

    Figure  9.  Curve of Vickers hardness with different indentation load

    图  10  载荷为9.80 N的压痕SEM照片

    Figure  10.  SEM image of the indentation with load of 9.80 N

    表  1  原料粉体的相关信息

    Table  1.   Related information of raw powder

    药品名称平均粒径/μm纯度/%厂家
    Ti4899.8上海麦克林生化科技有限公司
    Al≤7599.0天津市大茂化学试剂厂
    TiN2-1099.0上海麦克林生化科技有限公司
    AlN299.5上海麦克林生化科技有限公司
    下载: 导出CSV

    表  2  烧结参数

    Table  2.   Sintering parameters

    施压强度/MPa升温速率/(℃·min−1)烧结温度/℃保温时间/h冷却方式
    30151300~15000.5~4自然冷却
    下载: 导出CSV

    表  3  图7中各微区EDS能谱分析结果

    Table  3.   EDS analysis results of each micro region in Fig.7

    微区y(Ti)/%y(Al)/%y(N)/%化学式
    谱图11249.4313.8536.72Ti4.04Al1.13N3
    谱图11550.2913.3036.41Ti4.14Al1.10N3
    谱图11649.1313.2337.64Ti3.91Al1.05N3
    谱图11850.7213.1736.10Ti4.15Al1.04N3
    平均值49.8913.3936.72Ti4.08Al1.09N3
    下载: 导出CSV

    表  4  部分MAX相的硬度值[24-26]

    Table  4.   Hardness values of some MAX phases

    MAX相维氏硬度/GPa
    Ti2AlN 4.3
    Nb2AlC 6.1
    Cr2AlC 5.5
    Ta2AlC 4.4
    Ti3AlC2 3.5
    Ti3SiC2 4.0
    Ti3SnC2 9.3
    V4AlC3 6.74±0.12
    β-Ta4Al C3 5.1
    下载: 导出CSV
  • [1] Liu Yunlong, Zhu Degui, Hu Chunfeng. Preparation of Max phase coating by Max phase and spraying method[J]. Modern Technical Ceramics, 2017,38(1):21−28. (刘云龙, 朱德贵, 胡春峰. MAX相及喷涂法制备MAX相涂层[J]. 现代技术陶瓷, 2017,38(1):21−28.
    [2] Guo Qi. Microstructural analysis of Al2O3/Ti2AlN composite materials[J]. Material Sciences, 2018,8(12):1088−1093. doi: 10.12677/MS.2018.812130
    [3] Chen Leilei, Deng Zixuan, Li Mian, et al. Phase diagram thermodynamic study of new Max phase[J]. Journal of Inorganic Materials, 2020,35(1):35−40. (陈雷雷, 邓子旋, 李勉, 等. 新型MAX相的相图热力学研究[J]. 无机材料学报, 2020,35(1):35−40.
    [4] Elodie Drouelle, Veronique Brunet, Jonathan Cormier, et al. Oxidation resistance of Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phases: A comparison[J]. Journal of the American Ceramic Society, 2020,103(2):1270−1280. doi: 10.1111/jace.16780
    [5] Clark D W, Zinkle S J, Patel M K, et al. High temperature ion irradiation effects in MAX phase ceramics[J]. Acta Materialia, 2016,105:130−146. doi: 10.1016/j.actamat.2015.11.055
    [6] Gonzalez‐Julian J, Mauer G, Sebold D, et al. Cr2AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges[J]. Journal of the American Ceramic Society, 2020,103(4):2362−2375. doi: 10.1111/jace.16935
    [7] Jin Sen, Su Taichao, Hu Qianku, et al. Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2Ga2C[J]. Materials Research Letters, 2020,8(4):158−164. doi: 10.1080/21663831.2020.1724204
    [8] Sobolev K V, Kolincio K K, Emelyanov A, et al. Evolution of magnetic and transport properties in (Cr1−xMnx)2AlCMAX-phase synthesized by arc melting technique[J]. Journal of Magnetism and Magnetic Materials, 2020,493:165642/1−7.
    [9] Xu J, Zhao M Q, Wang Y, et al. Demonstration of Li-ion capacity of MAX phases[J]. ACS Energy Letters, 2016,1(6):1094−1099. doi: 10.1021/acsenergylett.6b00488
    [10] Anasori B, Luhatskaya M R, Gogotsi Y. 2D metal carbides and nitrides(MXenes) for energy storage[J]. Nature Reviews Materials, 2017,2(2):1−17.
    [11] Hui Xiaobin, Ge Xiaoli, Zhao Ruizheng, et al. Interface chemistry on MXene‐based materials for enhanced energy storage and conversion performance[J]. Advanced Functional Materials, 2020,30(50):2005190/1−37.
    [12] Guo Z, Zhou J, Zhu L, et al. MXene: a promising photocatalyst for water splitting[J]. Journal of Materials Chemistry A. Materials for Energy and Sustainability, 2016,4(29):11446−11452. doi: 10.1039/C6TA04414J
    [13] Pang J, Mendes R G, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews, 2019,48(1):72−133. doi: 10.1039/C8CS00324F
    [14] Wang Cong, Xu Jiawei, Wang Yunzheng, et al. MXene(Ti2NTx): Synthesis, characteristics and application as a thermo-optical switcher for all-optical wavelength tuning laser[J]. Science China Materials, 2020,64(1):1−7.
    [15] Yan Hanbing, Xu Jianguang, Wu Haijiang, et al. Synthesis of Ti4AlN3 powder by high energy ball milling combined with solid state reaction[J]. Mechanical Engineering Materials, 2014,38(2):36−38, 86. (严汉兵, 许剑光, 吴海江, 等. 高能球磨结合固相反应合成Ti4AlN3粉体[J]. 机械工程材料, 2014,38(2):36−38, 86.
    [16] Zhang Yanli. Study on microwave synthesis of titanium aluminum nitrogen materials[J]. Powder Metallurgy Technology, 2017,35(3):178−181, 201. (张艳丽. 微波合成钛铝氮材料的研究[J]. 粉末冶金技术, 2017,35(3):178−181, 201.
    [17] Wang Lei, Chen Nan. Preparation of Ti2AlN ternary compound ceramics by optimizing powder metallurgy process[J]. Industrial Technology Innovation, 2017,4(3):100−101, 105. (王蕾, 陈楠. 优选粉末冶金工艺制备Ti2AlN三元化合物陶瓷[J]. 工业技术创新, 2017,4(3):100−101, 105.
    [18] Muhammad Faraz Ud Din, Yang Chenhui, Tang Yi, et al. Efficient and cost-effective method to synthesize highly purified Ti4AlN3 and Ti2AlN[J]. Journal of Advanced Dielectrics, 2019,9(1):1950008/1−4.
    [19] Yang Tengfei, Wang Chenxu, Liu Wulong, et al. Comparison of irradiation tolerance of two MAX phases-Ti4AlN3 and Ti2AlN[J]. Journal of Nuclear Materials, 2018,513:120−128.
    [20] Firstov S A, Gorban V F, Pechkovskii I. Mechanical properties of porous Ti3SiC2/TiC, Ti3AlC2/TiC, and Ti4AlN3/TiN nanolaminates at 20 to 1 300 ℃[J]. Powder Metallurgy& Metal Ceramics, 2010,49(7-8):414−423.
    [21] Braverman B S, Lepakova O K, Maksimov Y M. Combustion of TiAl alloy in nitrogen[J]. Combustion Explosion & Shock Waves, 2015,51(4):457−461.
    [22] Barsoum M W, El-Raghy T, Procopio A. Synthesis of Ti4AlN3 and phase equilibria in the Ti-Al-N system[J]. Metallurgical and Materials Transactions A, 2000,31(2):373−378. doi: 10.1007/s11661-000-0273-1
    [23] Green L. Studies on the synthesis and microstructure of Ti2AlN films and protective effect on ferritic steels[D]. Albert-Ludwigs University of Freiburg Doctoral Dissertation. 2020. (Grner L. Untersuchungen zur Synthese und Mikrostruktur von Ti2AlN-Dünnschichten sowie deren Schutzwirkung auf ferritische Sthle[D]. Albert-Ludwigs-Universität FreiburgDoctoral Dissertation. 2020.)
    [24] Hossein-Zadeh M, Mirzaee O, Mohammadian-Semnani H. An investigation into the microstructure and mechanical properties of V4AlC3 MAX phase prepared by spark plasma sintering[J]. Ceramics International, 2019,45(6):7446−7457. doi: 10.1016/j.ceramint.2019.01.036
    [25] Zheng Liya, Zhou Yanchun, Feng Zhihai. Preparation, structure, properties and development trend of max phase ceramics[J]. Aerospace Materials Technology, 2013,43(6):1−23. (郑丽雅, 周延春, 冯志海. MAX相陶瓷的制备、结构、性能及发展趋势[J]. 宇航材料工艺, 2013,43(6):1−23. doi: 10.3969/j.issn.1007-2330.2013.06.001
    [26] Gu Jian, Jiang Xinyan, Guo Wenfei, et al. Research progress of ternary layered ceramics Nb4AlC3[J]. Jiangsu Ceramics, 2016,49(5):6−8, 19. (顾坚, 蒋鑫焱, 郭文飞, 等. 三元层状陶瓷Nb4AlC3的研究进展[J]. 江苏陶瓷, 2016,49(5):6−8, 19. doi: 10.3969/j.issn.1006-7337.2016.05.003
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  183
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回