留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空感应悬浮熔炼(TiC+TiB)增强钛基复合材料组织及高温拉伸性能研究

王振玲* 于玉城 李睿智 李强 韩嘉平 马兰

王振玲*, 于玉城, 李睿智, 李强, 韩嘉平, 马兰. 真空感应悬浮熔炼(TiC+TiB)增强钛基复合材料组织及高温拉伸性能研究[J]. 钢铁钒钛, 2021, 42(5): 54-61. doi: 10.7513/j.issn.1004-7638.2021.05.009
引用本文: 王振玲*, 于玉城, 李睿智, 李强, 韩嘉平, 马兰. 真空感应悬浮熔炼(TiC+TiB)增强钛基复合材料组织及高温拉伸性能研究[J]. 钢铁钒钛, 2021, 42(5): 54-61. doi: 10.7513/j.issn.1004-7638.2021.05.009
Wang Zhenling, Yu Yucheng, Li Ruizhi, Li Qiang, Han Jiaping, Ma Lan. Microstructure and high temperature tensile properties of (TiC+TiB) reinforced titanium matrix composites by vacuum induction suspension melting[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 54-61. doi: 10.7513/j.issn.1004-7638.2021.05.009
Citation: Wang Zhenling, Yu Yucheng, Li Ruizhi, Li Qiang, Han Jiaping, Ma Lan. Microstructure and high temperature tensile properties of (TiC+TiB) reinforced titanium matrix composites by vacuum induction suspension melting[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 54-61. doi: 10.7513/j.issn.1004-7638.2021.05.009

真空感应悬浮熔炼(TiC+TiB)增强钛基复合材料组织及高温拉伸性能研究

doi: 10.7513/j.issn.1004-7638.2021.05.009
基金项目: 四川省科技厅重点研发项目(2019YFG0082);攀枝花市科学技术局项目(2018CY-G-9);四川省教育厅重点项目(18ZA0295);2019年大学生创新创业项目(S201911360060)
详细信息
    作者简介:

    王振玲*:王振玲,女,辽宁喀左人,博士,副教授,通讯作者,主要从事钛合金、铝合金材料相关研究工作,E-mail:28930016@qq.com。

  • 中图分类号: TF823,TG146.23

Microstructure and high temperature tensile properties of (TiC+TiB) reinforced titanium matrix composites by vacuum induction suspension melting

  • 摘要: 利用真空感应悬浮熔炼炉制备了(TiC+TiB)/Ti-6Al-4Sn-8Zr-0.8Mo-1.5Nb-1W-0.25Si复合材料,增强体占比分别为0%、2%、4%(体积比)。利用金相显微镜、SEM、XRD、TEM和高温拉伸试验机研究了其显微组织和高温拉伸性能。结果表明:钛合金主要由α-Ti相和Ti2ZrAl相组成,Ti2ZrAl相分布在α-Ti片层交界位置。同时,复合材料中还存在多边形块状TiC和TiB长晶须。钛合金组织为典型的魏氏组织,在β-Ti晶粒内α-Ti相长成近平行排列的长针状。钛基复合材料中随着增强体数量增加,α-Ti长径比显著减小,β-Ti晶粒细化。在650~700 ℃范围钛基复合材料强度显著提高,2%增强体复合材料在650 ℃强化效果最优,4%增强体复合材料在700 ℃强化效果最优。温度超过700 ℃后,增强体强化效果减弱。复合材料塑性总体较低。钛基复合材料强化方式为细晶强化、固溶强化和载荷传递强化。高温拉伸时钛基复合材料的断裂方式为脆性断裂。
  • 图  1  铸件表层缺陷

    Figure  1.  The defects of the casting surface layer

    图  2  高温拉伸试样尺寸(单位:mm)

    Figure  2.  The size of high temperature tensile specimen

    图  3  钛基复合材料XRD图谱

    Figure  3.  XRD of titanium alloy and composite materials

    图  4  不同体积分数复合材料的显微组织

    Figure  4.  Microstructures of composites with different volume fractions of ( TiB+TiC) reinforcements

    图  5  钛基复合材料SEM显微组织及其标识部位EDS结果

    Figure  5.  SEM-EDS of the composites

    图  6  Ti-6Al-4Sn-8Zr-0.8Mo-1.5Nb-1W-0.25Si合金TEM组织、衍射斑点及α-Ti相EDS结果

    Figure  6.  TEM microstructure and the diffraction spot and of Ti-6Al-4Sn-8Zr-0.8Mo-1.5Nb-1W-0.25Si alloy, and EDS of α-Ti phase in the alloy

    图  7  复合材料强化率随温度变化

    Figure  7.  Variation of enhancement rate of the composites with the temperature

    图  8  钛基复合材料高温拉伸断口形貌

    Figure  8.  The tensile fracture morphology of titanium matrix composites

    表  1  不同增强体比例钛基复合材料中α-Ti相衍射峰位置

    Table  1.   Peak position of α-Ti phase in titanium matrix composite materials with different reinforcement composition ratios

    标准α-Ti衍射峰位置/(°)钛合金及复合材料衍射峰位置/(°)
    0BC2BC4BC
    35.09334.79434.67535.004
    38.42137.89237.72137.919
    40.17039.82239.74439.967
    53.00452.63752.53352.728
    62.94962.86562.87962.886
    70.66070.17970.07470.219
    76.21875.98476.06276.088
    77.36877.20377.19977.493
    82.29081.65381.48181.471
    86.75986.42786.62086.684
    注:0BC、2BC、4BC分别代表增强体添加比例为0、2%、4%。
    下载: 导出CSV

    表  2  钛基复合材料高温拉伸性能

    Table  2.   High temperature tensile properties of titanium matrix composites

    编号Rm/MPaRp0.2/MPaA/%
    650 ℃700 ℃750 ℃650 ℃700 ℃750 ℃650 ℃700 ℃750 ℃
    0BC655.602567.213488.085555.3491.75387.51.751.451.55
    2BC707.234599.885496.379627.5499.55383.251.70.51.1
    4BC772.363693.464433.342679.3594.9358.91.61.150.6
    注:0BC、2BC、4BC分别代表增强体添加比例为0、2%、4%。
    下载: 导出CSV
  • [1] Zhang Changjiang, Lin Sibo, Zhang Shuzhi, et al. Effect of TiC on microstructure and mechanical properties of high-temperature titanium matrix composites[J]. Rare Metal Materials and Engineering, 2017,46(S1):185−189. (张长江, 林思波, 张树志, 等. TiC含量对高温钛基复合材料组织功能性能的影响[J]. 稀有金属材料与工程, 2017,46(S1):185−189.
    [2] Yi Meng, Zhang Xiangzhao, Liu Guiwu, et al. Comparative investigation on microstructures and mechanical properties of (TiC+TiB)/Ti-6Al-4V composites from Ti-B4C-C and Ti-TiB2-TiC systems[J]. Materials Characterization, 2018,140:281−289. doi: 10.1016/j.matchar.2018.04.010
    [3] Zhang Changjiang, Zhang Shuzhi, Hou Zhaoping, et al. Tensile mechanical behavior and failure mechanism of (TiBw+TiCp)/Ti compsites at elevated temperature[J]. The Chinese Journal of Nonferrous Metals, 2016,26(11):2288−2295. (张长江, 张树志, 候赵平, 等. (TiBw+TiCp)/Ti复合材料高温拉伸力学行为与失效机理[J]. 中国有色金属学报, 2016,26(11):2288−2295.
    [4] 杨明华. 650~750 ℃短时高温钛合金成分优化及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 16−21.

    Yang Minghua. Composition optimization and microstructure and mechanical properties of high temperature alloys for short-term use at 650~700 ℃[D]. Harbin: Harbin Institute of Technology, 2015: 16−21.
    [5] 刁雨薇. Ti-Al-Sn-Zr-Mo-Nb-W-Si高温钛合金700 ℃拉伸行为研究[D]. 北京: 北京有色金属研究总院, 2019: 18−30.

    Diao Yuwei. The study on tensile behavior of Ti-Al-Sn-Zr-Mo-Nb-W-Si high temperature titanium alloy at 700 ℃[D]. Beijing: General Research Institute for Nonferrous Metals, 2019: 18−30.
    [6] 曹磊. 熔铸法制备TiC/Ti-6Al-4V复合材料组织与力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 1−6.

    Cao Lei. Research on microstructure and mechanical properties of TiC/Ti-6Al-V composties fabricated by melting-casing process[D]. Harbin: Harbin Institute of Technology, 2010: 1-6.
    [7] Cui Yapeng, Chen Ziyong, Ma Xiaozhao, et al. Microstructures and mechanical properties of a new type of high temperature titanium alloy[J]. Materials Science Forum, 2020,993:208−216. doi: 10.4028/www.scientific.net/MSF.993.208
    [8] 张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京: 化学工业出版社, 2005: 140.

    Zhang Xiyan, Zhao Yongqing, Bai Chenguang. Titanium and its application[M]. Beijing: Chemical Industry Press, 2005: 140.
    [9] 叶园. Zr含量对650 ℃短时高温钛合金显微组织和力学性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2020: 21-50.

    Ye Yuan. Effect of Zr content on microstructure and mechanical properties of high temperature titanium alloys for short-temperature at 650 ℃[D]. Harbin: Harbin Institute of Technology, 2020: 21-50.
    [10] 宋卫东, 王成, 毛小南. 颗粒增强钛基复合材料-加工制备、性能与表征[M]. 北京: : 科学出版社, 2017: 114.

    Song Weidong, Wang Cheng, Mao Xiaonan. Preparation, properties and characterization of particle reinforced titanium matrix composites [M]. Beijing: Science Press, 2017: 114.
    [11] Wang Xiaopeng, Chen Yuyong, Xu Lijuan, et al. Ti-Nb-Sn-hydrotherapy composites synthesized by mechanical alloying and high frequency induction heated sintering[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011,(4):2074−2080.
    [12] 李冲. 原位合成TiC及TiC+TiB增强TB8钛基复合材料组织与性能研究[D]. 镇江: 江苏大学, 2020: 21-22.

    Li Chong. Research on microstructure and properties of in-situ synthesized TiC and TiC+TiB reinforced TB8 titanium matrix composites[D]. Zhenjiang: Jiangsu University, 2020: 21-22.
    [13] Zhang Lei, Yu Jiashi, Xu Kaixuan, et al. Microstructure and microhardness of (GNPs+B)/TC4 titanium matrix composites[J]. Titanium Industry Progress, 2021,38(3):12−16. (张雷, 于佳石, 许凯旋, 等. (GNPs+B)/TC4复合材料组织和硬度研究[J]. 钛工业进展, 2021,38(3):12−16.
    [14] 曹洪川. 石墨烯增强钛基复合材料的强塑性及摩擦磨损性能研究[D]. 贵阳: 贵州大学, 2020: 31.

    Cao Hongchuan. Study on the strength plasticty and frictionand and wear properties of graphene-reinforced titanium matrix composites[D]. Guiyang: Guizhou Uniersity, 2020: 31.
    [15] Li YueYing, Fu Wenzhu, Zhen Liangqiao. Study on mechanical alloying of TiB2 particulate reinforced titanium matrix composite[J]. Applied Mechanics and Materials, 2018, 4579:41−46.
    [16] 何永亮, 张志勇, 张福利, 等. 真空感应悬浮炉关键技术及装备的发展与应用[C]// 2018中国铸造活动周论文集. 苏州: 中国机械工程学会铸造分会, 2018: 1−4.

    He Yongliang, Zhang Zhiyong, Zhang Fuli, et al. Development and application of key technology and equipment of the vacuum induction levitation furnace[C]// 2018 China Casting Activity Week Proceedings. Suzhou: The Foundry Institution of China Mechanical Engineering Society, 2018: 1−4.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  315
  • HTML全文浏览量:  30
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回