留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种近α钛合金管在热轧过程中位向对组织球化的影响

祝文沙 潘明艳

祝文沙, 潘明艳. 一种近α钛合金管在热轧过程中位向对组织球化的影响[J]. 钢铁钒钛, 2021, 42(5): 69-73, 98. doi: 10.7513/j.issn.1004-7638.2021.05.011
引用本文: 祝文沙, 潘明艳. 一种近α钛合金管在热轧过程中位向对组织球化的影响[J]. 钢铁钒钛, 2021, 42(5): 69-73, 98. doi: 10.7513/j.issn.1004-7638.2021.05.011
Zhu Wensha, Pan Mingyan. Effect of crystallographic orientation on globularization during the rolling of a near α titanium alloy tube[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 69-73, 98. doi: 10.7513/j.issn.1004-7638.2021.05.011
Citation: Zhu Wensha, Pan Mingyan. Effect of crystallographic orientation on globularization during the rolling of a near α titanium alloy tube[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 69-73, 98. doi: 10.7513/j.issn.1004-7638.2021.05.011

一种近α钛合金管在热轧过程中位向对组织球化的影响

doi: 10.7513/j.issn.1004-7638.2021.05.011
基金项目: 国家自然科学基金(编号11535010)资助;山西机电职业技术学院科技创新类院级课题(编号KT-20002)。
详细信息
    作者简介:

    祝文沙(1987—),女,河北邯郸人,硕士,讲师,研究方向:材料加工等, E-mail:shasha_laobai@163.com

    通讯作者:

    潘明艳,讲师,博士,E-mail:pmy@siom.ac.cn

  • 中图分类号: TF823,TG337.6

Effect of crystallographic orientation on globularization during the rolling of a near α titanium alloy tube

  • 摘要: 研究了一种近α钛合金管在热轧过程中发生的动态球化规律。通过金相组织分析和电子背散射衍射(EBSD)技术对管材外表面附近和中间部位进行观察,结果发现:在热轧过程中,管材外表面附近的α相球化率很高,球化后的组织大角度晶界变多而小角度晶界变少;中间部位的α相球化程度受晶体学位向影响很大。通过计算不同晶体学取向α相的施密特因子,发现基面滑移和柱面滑移在轧向(RD)和弦向(TD)均有较大的施密特因子(>0.3)时,很容易发生球化。当α相仅有一种滑移系且仅在一个方向有较大的施密特因子时,则很难被球化。
  • 图  1  热轧管取样示意

    Figure  1.  Schematic diagram of sampled hot rolled tube

    图  2  轧制前管材的微观组织

    Figure  2.  Microstructure of the pipe before rolling

    图  3  管材纵截面不同部位的微观组织

    Figure  3.  Microstructure of different parts of the longitudinal section of the tube

    图  4  不同区域的再结晶晶粒分布情况

    Figure  4.  Distribution of recrystallized grains in different regions

    图  5  不同区域的位相差统计

    Figure  5.  Phase difference statistics of different regions

    图  6  管材不同区域的TD方向的EBSD反极图

    Figure  6.  The inverse pole figures in TD direction in different regions of the tube

    表  1  钛合金管材的实测成分

    Table  1.   Chemical compositions of Ti80 pipe %

    TiAlNbZrMoSiFeCNO
    87.6146.123.12.070.940.030.020.0050.0010.10
    下载: 导出CSV

    表  2  不同晶粒在不同应变方向下的施密特因子

    Table  2.   Schmidt factors of different grains in different strain directions

    滑移系施密特因子
    A1A2A3B1B2B3B4
    基面滑移
    {0001}
    RD0.320.080.060.280.050.340.02
    TD0.350.340.100.370.360.270.05
    柱面滑移
    {10-10}
    RD0.420.490.310.450.460.310.19
    TD0.500.280.200.400.080.410.45
    下载: 导出CSV
  • [1] Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996,213(1−2):103−114. doi: 10.1016/0921-5093(96)10233-1
    [2] Schutz R W, Watkins H B. Recent developments in titanium alloy application in the energy industry[J]. Materials Science and Engineering A, 1998,243(1−2):305. doi: 10.1016/S0921-5093(97)00819-8
    [3] Gorynin I V. Titanium alloys for marine application[J]. Materials Science and Engineering A, 1999,263:112−116. doi: 10.1016/S0921-5093(98)01180-0
    [4] Li Baoxia, Li Hongbo, Zhao Fuqiang, et al. Study on technology of large size TC4 seamless pipe[J]. Nonferrous Metals Processing, 2018,47(5):47−49. (李宝霞, 李红博, 赵富强. 大规格TC4无缝管材工艺研究[J]. 有色金属加工, 2018,47(5):47−49. doi: 10.3969/j.issn.1671-6795.2018.05.011
    [5] Salem A A, Glavicic M G, Semiatin S L. The effect of preheat temperature and interpass reheating on microstructure and texture evolution during hot-rolling of Ti-6Al-4V[J]. Materials Science and Engineering A, 2008,496:169−176. doi: 10.1016/j.msea.2008.05.017
    [6] Bantounas I, Dye D, Lindley T C. The role of microtexture on the faceted fracture morphology in Ti–6Al–4V subjected to high-cycle fatigue[J]. Acta Materialia, 2010,58:3908−3918. doi: 10.1016/j.actamat.2010.03.036
    [7] Humbert M, Germain L, Gey N. Study of the variant selection in sharp textured regions of bimodal IMI 834 billet[J]. Materials Science and Engineering A, 2006,430:157−164. doi: 10.1016/j.msea.2006.05.047
    [8] Zhu Zhishou, Wang Qingru, Zheng Yongling. Quasi-β forging processing of titanium alloys[J]. Acta Metallurgica Sinica, 2002,38:382−384. (朱知寿, 王庆如, 郑永灵. 准β锻造钛合金的组织与性能研究[J]. 金属学报, 2002,38:382−384. doi: 10.3321/j.issn:0412-1961.2002.z1.117
    [9] Lütjering G, Albrecht J, Sauer C, et al. The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior[J]. Materials Science and Engineering A, 2007,470:201−209.
    [10] Song Hongwu, Zhang Shihong, Cheng Ming. Dynamic globularization kinetics during hot working of a two phase titanium alloy with a colony alpha microstructure[J]. Journal of Alloys and Compounds, 2009,480:922−927. doi: 10.1016/j.jallcom.2009.02.059
    [11] Semiatin S L, Seetharaman V, Weiss I. Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure[J]. Materials Science and Engineering A, 1999,263:257−271. doi: 10.1016/S0921-5093(98)01156-3
    [12] Park C H, Won J W, Park J W. Mechanisms and kinetics of static spheroidization of hot-worked Ti-6Al-2Sn-4Zr-2Mo-0.1Si with a lamellar microstructure[J]. Metallurgical and Materials Transactions A, 2012,43:977−985. doi: 10.1007/s11661-011-1019-y
    [13] Bieler T R, Semiatin S L. The origins of heterogeneous deformation during primary hot working of Ti–6Al–4V[J]. International Journal of Plasticity, 2002,18:1165−1189. doi: 10.1016/S0749-6419(01)00057-2
    [14] Roy S, Suwas S. Microstructure and texture evolution during sub-transus thermomechanical processing of Ti-6Al-4V-0.1B alloy: Part I. Hot rolling in (α+β) phase field[J]. Metallurgical and Materials Transactions A, 2013,44:3303−3321. doi: 10.1007/s11661-013-1672-4
    [15] Roy S, Suwas S. The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti-6Al-4V-0.1B[J]. Journal of Alloys and Compounds, 2013,548:110−125. doi: 10.1016/j.jallcom.2012.08.123
    [16] Roy S, Suwas S. Orientation dependent spheroidization response and macro-zone formation during sub β-transus processing of Ti-6Al-4V alloy[J]. Acta Materialia, 2017,134:283−301. doi: 10.1016/j.actamat.2017.04.071
    [17] Shi Jiaxin, Yu Wei, Dong Entao. Hot continuous-rolling process for Ti alloy seamless pipe and its application[J]. Journal of Chongqing University, 2019,42:43−47. (史佳新, 余伟, 董恩涛. 钛合金无缝管热连轧工艺及应用[J]. 重庆大学学报, 2019,42:43−47.
    [18] Wang L, Fan X G, Zhan M, et al. The heterogeneous globularization related to crystal and geometrical orientation of two-phase titanium alloys with a colony microstructure[J]. Materials and Design, 2020,186:108338. doi: 10.1016/j.matdes.2019.108338
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  7
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回