留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚微米级α相氧化铝粉体在锂离子电池PE隔膜涂层中的应用

罗金华 赵能

罗金华, 赵能. 亚微米级α相氧化铝粉体在锂离子电池PE隔膜涂层中的应用[J]. 钢铁钒钛, 2021, 42(5): 74-78. doi: 10.7513/j.issn.1004-7638.2021.05.012
引用本文: 罗金华, 赵能. 亚微米级α相氧化铝粉体在锂离子电池PE隔膜涂层中的应用[J]. 钢铁钒钛, 2021, 42(5): 74-78. doi: 10.7513/j.issn.1004-7638.2021.05.012
Luo Jinhua, Zhao Neng. Application of sub-micron α phase alumina powder in PE membrane coating of lithium ion battery[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 74-78. doi: 10.7513/j.issn.1004-7638.2021.05.012
Citation: Luo Jinhua, Zhao Neng. Application of sub-micron α phase alumina powder in PE membrane coating of lithium ion battery[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 74-78. doi: 10.7513/j.issn.1004-7638.2021.05.012

亚微米级α相氧化铝粉体在锂离子电池PE隔膜涂层中的应用

doi: 10.7513/j.issn.1004-7638.2021.05.012
基金项目: 四川省科技厅重点研发项目(2020YFG0216)。
详细信息
    作者简介:

    罗金华(1981—),男,湖南郴州人,博士,讲师,长期从事纳米新材料方面的研究工作,E-mail:ljhazq020312@163.com。

  • 中图分类号: TF124,TM912.9

Application of sub-micron α phase alumina powder in PE membrane coating of lithium ion battery

  • 摘要:D50=1.08 μm的α-氧化铝粉体原料,通过物理法机械球磨制备亚微米级α-氧化铝粉体,然后将其应用在锂离子电池隔膜涂覆改性方面。将亚微米级α-氧化铝粉体应用于锂离子电池PE隔膜涂层,对比了涂覆前后PE隔膜性能的改变。结果表明:涂层致密平整,氧化铝颗粒均匀分布在PE隔膜表面,膜厚2.5 μm,涂覆后面密度增加了4.0 g/m2,透气度增加0.482 s/mL,纵向和横向的热收缩率分别降低了1.3%和0.3%,拉伸强度分别提升了26.4 MPa和3 MPa。
  • 图  1  不同粒径α-氧化铝粉体的XRD谱

    Figure  1.  XRD patterns of α-alumina powders with different particle sizes

    图  2  不同粒径α-氧化铝粉体的SEM形貌

    Figure  2.  SEM images of α -alumina powders with different particle sizes

    图  3  D50=0.42 μm氧化铝粉体的DSC-TG曲线

    Figure  3.  DSC-TG curve of alumina powder D50=0.42 μm

    图  4  涂覆亚微米级α-氧化铝前后PE隔膜的SEM形貌

    Figure  4.  SEM image of PE membrane coated with sub-micron α-alumina

    表  1  涂覆亚微米级α-氧化铝前后PE隔膜的基本性状

    Table  1.   Basic properties of PE membrane coated with sub-micron α-alumina

    状态厚度/μm面密度/(g·m−2)透气度/(s·mL−1)孔隙率/%
    涂覆前6.25.21.7540
    涂覆后8.79.22.23238.1
    注:厚度检测方法按照GB/T 6672—2001进行;透气度检测方法按照GB/T 458—2008进行;面密度和孔隙率采用重量法检测。
    下载: 导出CSV

    表  2  涂覆亚微米级α-氧化铝前后PE隔膜的热收缩率对比

    Table  2.   Comparison of the thermal shrinkage of PE membrane before and after submicron α-alumina coating

    状态热收缩率/%
    纵向MD横向TD
    涂覆前3.20.6
    涂覆后1.90.3
    下载: 导出CSV

    表  3  涂覆亚微米级α-氧化铝前后PE隔膜的拉伸强度对比

    Table  3.   Comparison of the tensile strength of PE membrane before and after submicron α-alumina coating

    状态拉伸强度/MPa
    纵向MD横向TD
    涂覆前157106
    涂覆后183.4109
    下载: 导出CSV
  • [1] Wang Chang, Wu Dayong. Lithium ion battery separator and technical progress[J]. Energy Storage Science and Technology, 2016,5(2):120−128. (王畅, 吴大勇. 锂离子电池隔膜及技术进展[J]. 储能科学与技术, 2016,5(2):120−128. doi: 10.3969/j.issn.2095-4239.2016.02.002
    [2] Xiao Wei, Gong Yaqun, Wang Hong, et al. Advances in lithium-ion battery separator technology[J]. Energy Storage Science and Technology, 2016,5(2):188−196. (肖伟, 巩亚群, 王红, 等. 锂离子电池隔膜技术进展[J]. 储能科学与技术, 2016,5(2):188−196. doi: 10.3969/j.issn.2095-4239.2016.02.010
    [3] Zhao H L, Chen J T, Rao G Y, et al. Enhancing photocatalytic CO2 reduction by coating an ultrathin Al2O3 layer on oxygen deficient TiO2 nanorods through atomic layer deposition[J]. Applied Surface Science, 2017,404(15):49−56.
    [4] Shi Linpu, Zhao Yanfei, Xue Jianqiang, et al. Size and molding pressure on sintering behavior of α-alumina powder[J]. Material Development and Application, 2020,35(1):1−4. (师琳璞, 赵延飞, 薛建强, 等. 粒径及成型压力对α氧化铝粉体烧结行为的影响[J]. 材料开发与应用, 2020,35(1):1−4.
    [5] Wang Shifeng, Wang Huanping, Zhou Guangmiao, et al. Preparation and characterization of α-Al2O3 submicron powders synthesized at low temperature by sol-gel method[J]. CIESC Journal, 2010,61(12):3290−3295. (王世锋, 王焕平, 周广淼, 等. 溶胶-凝胶法低温合成亚微米α-Al2O3的制备与表征[J]. 化工学报, 2010,61(12):3290−3295.
    [6] He Wenlong, Yu Yang, He Chen. Preparation of nano-Al2O3 and its application in ceramic ultrafiltration membrane[J]. Chinese Ceramics, 2019,55(7):1−8. (何文龙, 余阳, 和丞. 纳米Al2O3的制备及在陶瓷超滤膜制备上的应用研究[J]. 中国陶瓷, 2019,55(7):1−8.
    [7] Mirzaeian M, Abbas Q, Hunt M, et al. Pseudocapacitive effect of carbons doped with different functional groups as electrode materials for electrochemical capacitors[J]. Energies, 2020,13(21):5577−5579. doi: 10.3390/en13215577
    [8] Kumar S, Asit Kumar K, Roy J. Processing and properties of sintered submicron IR transparent alumina derived through sol–gel method[J]. Journal of Sol Gel Science and Technology, 2018,86(2):374−382. doi: 10.1007/s10971-018-4651-9
    [9] Xu Jian, He Linli, Jing Xiwei, et al. Preparation and properties of polyethylene separator modified by alumina / acrylate emulsion[J]. Fine Chemical Industry, 2019,36(7):1321−1325. (徐健, 何林莉, 景希玮, 等. 氧化铝/丙烯酸酯乳液改性聚乙烯隔膜的制备及性能[J]. 精细化工, 2019,36(7):1321−1325.
    [10] Ibrahim A, Zhao Jiaqi, Shi Meng, et al. Cyclic stability of Al-doped lithium manganese materials in water-based lithium ion batteries[J]. Energy Storage Science and Technology, 2021,(4):1330−1337. (Ibrahim A, 赵佳琦, 师萌, 等. Al掺杂锰酸锂材料在水系锂离子电池中的循环稳定性[J]. 储能科学与技术, 2021,(4):1330−1337.
    [11] Chinelatto A S A, Tomasi R. Influence of processing atmosphere on the microstructural evolution of submicron alumina powder during sintering[J]. Ceramics International, 2009,35(7):2915−2920. doi: 10.1016/j.ceramint.2009.03.037
    [12] Sun Z Q, La B Q, Peng H, et al. Alumina ceramics with uniform grains prepared from Al2O3 nanospheres[J]. Journal of Alloys and Compounds, 2016,688(3):933−938.
    [13] Liu H M, Li M, Dao T, et al. Design of Pd Au alloy plasmonic nanoparticles for improved catalytic performance in CO2 reduction with visible light irradiation[J]. Nano Energy, 2016,26(12):398−404.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  160
  • HTML全文浏览量:  11
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回