留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不锈钢精炼渣在电炉热态利用试验研究

赵海泉

赵海泉. 不锈钢精炼渣在电炉热态利用试验研究[J]. 钢铁钒钛, 2021, 42(5): 120-125. doi: 10.7513/j.issn.1004-7638.2021.05.019
引用本文: 赵海泉. 不锈钢精炼渣在电炉热态利用试验研究[J]. 钢铁钒钛, 2021, 42(5): 120-125. doi: 10.7513/j.issn.1004-7638.2021.05.019
Zhao Haiquan. Test on the hot utilization of stainless steel refining slag in EAF[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 120-125. doi: 10.7513/j.issn.1004-7638.2021.05.019
Citation: Zhao Haiquan. Test on the hot utilization of stainless steel refining slag in EAF[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 120-125. doi: 10.7513/j.issn.1004-7638.2021.05.019

不锈钢精炼渣在电炉热态利用试验研究

doi: 10.7513/j.issn.1004-7638.2021.05.019
基金项目: 国家重点研发计划项目:钢铁流程绿色化关键技术(项目编号:2017YFB0304300)
详细信息
    作者简介:

    赵海泉(1975—),男,山西文水人,博士,副研究员,从事冶金固废资源化利用工艺研究,E-mail:zhao_hai_quan@163.com。

  • 中图分类号: X757

Test on the hot utilization of stainless steel refining slag in EAF

  • 摘要: 在不锈钢精炼渣热态利用性质分析基础上,结合电炉为钢水粗炼、电能熔炼特点,开展了热态注余渣在电炉冶炼利用的试验研究。试验研究表明,电炉利用热态注余渣不仅有助于高碱度液渣快速形成,提高脱硫效率,降低石灰消耗3 kg/t,降低轻烧白云石1.2 kg/t,降低萤石消耗1.8 kg/t;而且回收了注余渣余热,吨钢电耗降低5~10 kWh,同时改善了EAF冶炼条件,降低了钢水氧化损耗,降低还原硅铁消耗1.5~2 kg/t,缩短了冶炼时间3~5 min/炉。就钢渣资源利用、节能减排方面,该研究成果对精炼渣利用发展具有借鉴作用。
  • 图  1  不锈钢生产工艺及EAF回收热态注余渣试验流程

    Figure  1.  Flow chart of stainless steel process and EAF recovery hot residual test

    图  2  试验(CaO)有效利用率

    Figure  2.  The effective utilization of (CaO) in test

    图  3  试验石灰消耗对比

    Figure  3.  The comparison of lime consumption in test

    图  4  试验轻烧白云石消耗对比

    Figure  4.  The comparison of light burn consumption in test

    图  5  试验萤石消耗对比

    Figure  5.  The comparison of fluorite consumption in test

    图  6  试验吨钢电耗

    Figure  6.  The power consumption per heat in test

    图  7  试验硅铁消耗对比

    Figure  7.  The comparison of ferrosilicon consumption in test

    图  8  试验冶炼时间对比

    Figure  8.  The comparison of smelting time in test

    表  1  国内某不锈钢厂LF精炼渣主要成分

    Table  1.   Main components of a domestic stainless steel factory LF refining slag

    w(CaO)/%w(MgO) /%w(Al2O3) /%w(SiO2) /%w(MnO) /%w(FeO) /%RCS
    60~675~82~415~200.2~0.50.3~0.53~4.50.015~0.25
    下载: 导出CSV

    表  2  EAF回收热态注余渣试验的消耗对比

    Table  2.   Comparison of consumption in test of recycling hot residual in EAF

    试验用量/(kg·炉−1)电耗/
    (kWh·t−1)
    冶炼时间/
    (min·炉−1)
    石灰萤石轻烧硅铁
    未回收6500~7500450~500350~4001800~2000310~33050~55
    回收6300~6800150~200200~2501300~1500280~30048~52
    下载: 导出CSV
  • [1] Pan Congchao, Guo Peimin, Pang Jianming, et al. Research on six components slag system of stainless slag[J]. Journal of Iron and Steel Research, 2013,25(7):5−10. (潘聪超, 郭培民, 庞建明, 等. 不锈钢渣六元渣系模型研究[J]. 钢铁研究学报, 2013,25(7):5−10.
    [2] Zhang Yu, Zhang Jian, Zhang Tianyou, et al. Analysis of steel slag treatment technology and waste heat recovery technology[J]. China Metallurgy, 2014,24(8):33−37. (张宇, 张健, 张天有, 等. 钢渣处理与余热回收技术的分析[J]. 中国冶金, 2014,24(8):33−37.
    [3] Lv Yan, Yang Libin, Lin Lu, et al. Leaching characteristics and affecting factors of total chromium and chromium Ⅵ in chromium-containing special steel slag[J]. Iron and Steel, 2019,54(6):103−108. (吕岩, 杨利彬, 林路, 等. 含铬特殊钢渣中总铬及六价铬浸出特性及影响[J]. 钢铁, 2019,54(6):103−108.
    [4] Liu Yanqiang, Luo Lei, Zhang Peng, et al. Development of green recycling system of hot slag and molten steel at Shougang Jingtang[J]. China Metallurgy, 2018,28(6):25−31. (刘延强, 罗磊, 张鹏, 等. 首钢京唐热态渣、钢绿色循环利用体系开发[J]. 中国冶金, 2018,28(6):25−31.
    [5] Wang Zhengjie, Yang Jian, Pan De′an, et al. Present state of stainless steel slag reourses disposal technique[J]. Journal of Iron and Steel Research, 2015,27(2):1−6. (汪正洁, 杨健, 潘德安, 等. 不锈钢渣资源化利用技术研究现状[J]. 钢铁研究学报, 2015,27(2):1−6.
    [6] Lv Yan, Na Xianzhao, Qi Yuanhong, et al. Harmless treatment of stainless steel EAF slag and its engineering performance for using as cement-base materials[J]. Iron and Steel, 2014,49(4):90−96. (吕岩, 那贤昭, 齐渊洪, 等. 不锈钢EAF渣无害化处置及作为水泥基材料的工程性能[J]. 钢铁, 2014,49(4):90−96.
    [7] Xu Ying, Zhang Zizi, Wang Bian, et al. Cureing influence factors and mechanism of stainless steel slag in AOD[J]. Iron and Steel, 2017,52(8):43−47. (许莹, 张孜孜, 王变, 等. 不锈钢AOD渣固化效果影响因素及其机理[J]. 钢铁, 2017,52(8):43−47.
    [8] Feng Xiaoxia, Wang Qi, Tan Bo, et al. Effect of TiO2 in refining slag on inclusions in Ti-ferritic stainless steel[J]. Iron Steel Vanadium Titanium, 2020,41(2):108−113. (冯晓霞, 王旗, 谭博, 等. 精炼渣中TiO2对含Ti铁素体不锈钢夹杂物的影响[J]. 钢铁钒钛, 2020,41(2):108−113.
    [9] Zhuang Ying, Li Jidong. Prediction model of GA-BP moltem slag activity and deoxidation mechanium of stainless steel[J]. China Metallurgy, 2017,27(1):11−18. (庄迎, 李吉东. GA-BP渣系活度预测模型及不锈钢脱氧机理[J]. 中国冶金, 2017,27(1):11−18.
    [10] Han Shaowei, Guo Jing, Chen Xingrun, et al. Thermodynamics of desulfurization and industrial trials for refining of 304 stainless steel with low basicity slag[J]. Iron and Steel, 2018,53(6):47−52. (韩少伟, 郭靖, 陈兴润, 等. 低碱度渣冶炼304不锈钢脱硫热力学和工业试验[J]. 钢铁, 2018,53(6):47−52.
    [11] Chen Xingrun, Han Shaowei, Guo Jing, et al. Inclusion evolution of 304 stainless steel produced with different LF refining slag basicity[J]. Iron and Steel, 2019,54(11):40−48. (陈兴润, 韩少伟, 郭靖, 等. 304不锈钢不同精炼钢渣碱度下夹杂物的演变[J]. 钢铁, 2019,54(11):40−48.
    [12] Ding Guangyou, Xu Zhirong, Shi Cuiwei. Development and application of re-utilization technology of LF hot steel-making slag[J]. Steelmaking, 2006,22(4):12−15. (丁广友, 徐志荣, 史翠微. LF热态钢渣循环再利用技术的开发与应用[J]. 炼钢, 2006,22(4):12−15. doi: 10.3969/j.issn.1002-1043.2006.04.004
    [13] Ma Yong, Zhao Chenglin, Chen Zhiwei. LF hot slag was used in desulfurization experiment of molten steel[J]. Journal of University of Science and Technology Liaoning, 2012,35(6):590−593. (马勇, 赵成林, 陈志威. LF热态铸余钢渣用于钢水脱硫实验[J]. 辽宁科技大学学报, 2012,35(6):590−593. doi: 10.3969/j.issn.1674-1048.2012.06.007
    [14] Du Yuncong, Yi Yuanrong, Bai Shuqi, et al. Change of occurrence state in carbonation process of LF refing slag[J]. Journal of Iron and Steel Research, 2020,32(3):195−203. (杜昀聪, 伊元荣, 白书齐, 等. LF精炼渣碳酸化过程Ca赋存状态转变[J]. 钢铁研究学报, 2020,32(3):195−203.
    [15] Sun Zhongqiang, Jiang Maofa, Liang Lianke. Determination of sulfide capacity, sulfur distribution ratio and desulfurization percentage in ladle furnace refining process[J]. Journal of Iron and Steel Research, 2004,16(3):23−26. (孙中强, 姜茂发, 梁连科. LF精炼过程中顶渣硫容量、分配比和脱硫率的确定[J]. 钢铁研究学报, 2004,16(3):23−26. doi: 10.3321/j.issn:1001-0963.2004.03.006
    [16] Li Taiquan, Bao Yanping, Wu Huajie. Controlling of super-low sulfide of high grade pipeline steel[J]. Iron and Steel, 2009,44(5):35. (李太全, 包燕平, 吴华杰. 高级别管线钢超低硫控制研究[J]. 钢铁, 2009,44(5):35. doi: 10.3321/j.issn:0449-749X.2009.05.009
    [17] Liu Zhennan, Tao Dongping, Yao Chunling, et al. Phase equilibrium study and thermodynamic analysis on secondary refining process of titanium-microalloyed steel[J]. Journal of Iron and Steel Research, 2019,31(8):702−711. (刘振楠, 陶东平, 姚春玲, 等. 钛微合金钢炉外精炼相平衡研究与热力学分析[J]. 钢铁研究学报, 2019,31(8):702−711.
    [18] Li Shun, Zhang Gongduo, Li Xiaotang. Experiment for primary heat recovery in dry granulation molten blast furnace slag[J]. Industrial Heating, 2014,43(2):60−62. (李顺, 张功多, 李晓堂. 干式粒化熔渣余热初次回收试验研究[J]. 工业加热, 2014,43(2):60−62. doi: 10.3969/j.issn.1002-1639.2014.02.017
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  58
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回