中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三相氩气搅拌钢包内界面行为及混合现象的数值模拟

杨亚迪 赵晶 崔剑征

杨亚迪, 赵晶, 崔剑征. 三相氩气搅拌钢包内界面行为及混合现象的数值模拟[J]. 钢铁钒钛, 2021, 42(5): 138-148. doi: 10.7513/j.issn.1004-7638.2021.05.022
引用本文: 杨亚迪, 赵晶, 崔剑征. 三相氩气搅拌钢包内界面行为及混合现象的数值模拟[J]. 钢铁钒钛, 2021, 42(5): 138-148. doi: 10.7513/j.issn.1004-7638.2021.05.022
Yang Yadi, Zhao Jing, Cui Jianzheng. Numerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 138-148. doi: 10.7513/j.issn.1004-7638.2021.05.022
Citation: Yang Yadi, Zhao Jing, Cui Jianzheng. Numerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 138-148. doi: 10.7513/j.issn.1004-7638.2021.05.022

三相氩气搅拌钢包内界面行为及混合现象的数值模拟

doi: 10.7513/j.issn.1004-7638.2021.05.022
基金项目: 辽宁省中央引导地方科技发展专项资金(No.2020JH6/10500016)。
详细信息
    作者简介:

    杨亚迪(1995—),女,辽宁葫芦岛人,硕士研究生,主要从事流体机械研究,E-mail:1416464879@qq.com

    通讯作者:

    赵晶,女,辽宁沈阳人,博士,教授,主要从事流体机械及工程研究,E-mail:lnzj9999@hotmail.com

  • 中图分类号: TF769.2

Numerical simulation on interfacial behavior and mixing phenomena in three-phase argon-stirred ladles

  • 摘要: 采用多相流体积法,根据模型设计参数对某钢厂180 t钢包建立了氩气/钢液/钢渣三相流动数学模型,运用CFD软件Fluent模拟研究了钢包底吹氩气过程中的三相流界面行为及混合现象。基于流体力学理论,计算并分析了底吹氩搅拌钢液过程中双透气砖布置位置和底吹氩气流量对钢包内速度流场、钢-渣界面行为及混匀时间的影响规律。结果表明,在钢包底吹氩过程中,双透气砖的布置位置对钢包内流场效果影响较大,底吹氩气流量则对钢-渣界面行为及混匀时间影响较大。当双透气砖间夹角为135°、距包底中心距离为0.6R、底吹氩气流量为600 L/min时,钢包内流场分布较好,对钢液的搅拌效果最佳。
  • 图  1  钢包网格结构示意

    Figure  1.  Schematic diagram of ladle mesh

    图  2  不同夹角的双透气砖布置

    Figure  2.  Layout of double permeable bricks with different angles

    图  3  不同双透气砖布置位置时的速度流场

    Figure  3.  Velocity flow field diagram for different arrangement positions of double permeable bricks

    图  4  不同双透气砖布置位置时的“死区”比例和混匀时间

    Figure  4.  Histogram of dead zone proportion for different arrangement positions of double permeable bricks

    图  5  钢包内流体流动随时间变化的基本形貌($ \theta = $180°)

    Figure  5.  Basic morphology of fluid flow in ladle changing with time($ \theta = $180°)

    图  6  双透气砖间不同夹角时渣眼尺寸

    Figure  6.  Slag hole size at different angles between double permeable bricks

    图  7  示踪剂位置及监测点位置

    Figure  7.  Tracer positions and monitoring point positions

    图  8  示踪剂浓度变化曲线及混匀时间($ \theta = $45°)

    Figure  8.  Tracer concentration curves and mixing time($ \theta = $45°)

    图  9  双透气砖距包底中心不同距离时速度流场

    Figure  9.  Velocity flow field for different center distances between double permeable bricks and the bottom of ladle

    图  10  不同双透气砖中心距离时的“死区”比例及混匀时间

    Figure  10.  Histogram of dead zone proportion for different center distances between double permeable bricks and the bottom of ladle

    图  11  不同双透气砖中心距离时的渣眼尺寸

    Figure  11.  Slag hole size for different center distances between double permeable bricks and the bottom of ladle

    图  15  不同底吹气体流量时渣眼尺寸

    Figure  15.  Slag hole size under different bottom blowing gas flow rate

    图  12  不同底吹气体流量时的速度流场

    Figure  12.  Velocity flow field diagram for different bottom blowing gas flow rates

    图  13  不同底吹气体流量时的平均速度及平均湍动能

    Figure  13.  Average velocity and turbulent kinetic energy for different bottom blowing gas flow rates

    图  14  不同双透气砖中心距离时的“死区”比例

    Figure  14.  Histogram of dead zone proportion for different bottom blowing gas flow rates

    图  16  不同底吹气体流量时钢液面水平流速和混匀时间

    Figure  16.  Horizontal velocity of steel surface under different bottom blowing gas flow rates

    表  1  经验常数值

    Table  1.   Empirical constant values used in this study

    $ {C}_{1\epsilon } $$ {C}_{2\epsilon } $$ {C}_{3\epsilon } $$ {C}_{\mu } $$ {\sigma }_{k} $$ {\sigma }_{\epsilon } $
    1.441.921.20.091.01.3
    下载: 导出CSV

    表  2  钢包模型参数

    Table  2.   Ladle model parameters

    钢包顶部直径/mm钢包底部直径/mm钢液高度
    /mm
    钢包高度
    /mm
    渣层厚度
    /mm
    透气砖直径
    /mm
    3620300034603960150120
    下载: 导出CSV

    表  3  流体材料的物性参数

    Table  3.   Physical parameters of fluid materials

    密度/(kg·m−3粘度/(Pa·s)表面张力/(N·m−1
    氩气钢液钢渣空气氩气钢液钢渣空气钢液-钢渣钢液-空气钢渣-空气
    1.6228702035000.52.125$ \times $10−50.00550.068.9$ \times $10−51.21.820.58
    下载: 导出CSV

    表  4  钢液表面水平流速度计算结果

    Table  4.   Calculation results of horizontal velocity on the surface of molten steel

    渣/钢界面表面张力
    ($ {\sigma }_{\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{e}\mathrm{l}-\mathrm{s}\mathrm{l}\mathrm{a}\mathrm{g}} $)/($\mathrm{N}\cdot {\mathrm{m} }^{-1}$)
    钢液表面水平流速度
    ($ {v}_{\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{e}\mathrm{l}} $)/($\mathrm{m}\cdot {\mathrm{s} }^{-1}$)
    1.20.59
    0.120.34
    0.0120.18
    下载: 导出CSV
  • [1] 殷瑞钰. 合理选择二次精炼技术推进高效率低成本“洁净钢平台”建设[J]. 炼钢2010, 26(2): 1−9.

    Yin Ruiyu. Reasonable selection of secondary refining technology to promote the construction of “clean steel platform” with high efficiency and low cost[J]. Steelmaking, 2010, 26(2): 1−9.
    [2] Yang Zhaojun, Zeng Yanan, Li Junguo. Numerical simulation on optimization design of constructional and technical parameters of 65 t ladle[J]. Iron Steel Vanadium Titanium, 2016,37(2):112−117. (杨赵军, 曾亚南, 李俊国. 65 t钢包精炼工艺参数优化数值模拟[J]. 钢铁钒钛, 2016,37(2):112−117.
    [3] Lou W, Zhu M. Numerical simulations of inclusion behavior and mixing phenomena in gas-stirred ladles with different arrangement of tuyeres[J]. ISIJ International, 2014,54(1):9−18. doi: 10.2355/isijinternational.54.9
    [4] 蒋星亮. 70 t钢包底吹氩工艺优化及钢—渣界面行为研究[D]. 武汉: 武汉科技大学, 2013.

    Jiang Xingliang. The research for optimization of 70 t ladle bottom argon blowing process and the interfacial behavior of steel-slags[D]. Wuhan: Wuhan University of Science and Technology, 2013.
    [5] Zhang Jiangshan, Li Jingshe, Yang Jingbo. Numerical simulation of three-phase fluid flow in a bottom-blown steelmaking ladle[J]. The Chinese Journal of Process Engineering, 2012,12(6):946−951. (张江山, 李京社, 杨静波. 底吹钢包三相流的数值模拟[J]. 过程工程学报, 2012,12(6):946−951.
    [6] Li Linmin, Liu Zhongqiu, Cao Maoxue, et al. Large eddy simulation of bubbly flow and slag layer behavior in ladle with discrete phase model (DPM)–volume of fluid (VOF) coupled model[J]. Jom, 2015,67:1459−1467. doi: 10.1007/s11837-015-1465-x
    [7] Li Baokuan, Gu Mingyan, Qi Fengsheng, et al. Modeling of three-phase(gas/molten steel/slag) flows and slag later behavior in an argon gas stirred ladle[J]. Acta Metallurgica Sinica, 2008,44(10):1198−1202. (李宝宽, 顾名言, 齐凤升, 等. 底吹钢包内气/钢液/渣三相流模型及渣层行为的研究[J]. 金属学报, 2008,44(10):1198−1202. doi: 10.3321/j.issn:0412-1961.2008.10.010
    [8] Liu H, Qi Z, Xu M. Numerical simulation of fluid flow and interfacial behavior in three‐phase argon‐stirred ladles with one plug and dual plugs[J]. Steel Research International, 2011,82(4):440−458. doi: 10.1002/srin.201000164
    [9] Cao, Qing, Nastac, et al. Mathematical investigation of fluid flow, mass transfer, and slag-steel interfacial behavior in gas-stirred ladles[J]. Metallurgical & Materials Transactions B Process Metallurgy & Materials Processing Science, 2018.
    [10] 崔东静. 精炼炉氩气流量的优化设定与控制[D]. 沈阳: 东北大学, 2009.

    Cui Dongjing. The optimization and control of argon flux for refining furnace[D]. Shenyang: Northeastern University, 2009.
    [11] 李宝宽, 赫冀成. 炼钢中的计算流体力学[M]. 北京: 冶金工业出版社, 1998.

    Li Baokuan, He Jicheng. Computational fluid dynamics in steelmaking processes[M]. Beijing: Metallurgical Industry Press, 1998.
    [12] Asai S, Kawachi M, Muchi I. Mass transfer rate in ladle refining process[J]. Injection Metallurgy, 1983,12:4−9.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  772
  • HTML全文浏览量:  148
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-06
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回