中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含镁非调质钢中尖晶石转变机制研究

李志伟 曾志崎 谢剑波 田钱仁 付建勋

李志伟, 曾志崎, 谢剑波, 田钱仁, 付建勋. 含镁非调质钢中尖晶石转变机制研究[J]. 钢铁钒钛, 2021, 42(5): 164-169. doi: 10.7513/j.issn.1004-7638.2021.05.025
引用本文: 李志伟, 曾志崎, 谢剑波, 田钱仁, 付建勋. 含镁非调质钢中尖晶石转变机制研究[J]. 钢铁钒钛, 2021, 42(5): 164-169. doi: 10.7513/j.issn.1004-7638.2021.05.025
Li Zhiwei, Zeng Zhiqi, Xie Jianbo, Tian Qianren, Fu Jianxun. Transformation of the spine in Mg-treated non-quenched and tempered steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 164-169. doi: 10.7513/j.issn.1004-7638.2021.05.025
Citation: Li Zhiwei, Zeng Zhiqi, Xie Jianbo, Tian Qianren, Fu Jianxun. Transformation of the spine in Mg-treated non-quenched and tempered steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 164-169. doi: 10.7513/j.issn.1004-7638.2021.05.025

含镁非调质钢中尖晶石转变机制研究

doi: 10.7513/j.issn.1004-7638.2021.05.025
基金项目: 国家自然科学基金(51874195)资助
详细信息
    作者简介:

    李志伟(1995—),男,硕士研究生,研究方向:高品质特殊钢中夹杂物分析,Email:zhiwei_li07@163.com

    通讯作者:

    付建勋(1969—),男,博士,教授,研究方向:高品质特殊钢的开发与品质提升,E-mail:fujianxun@shu.edu.cn

  • 中图分类号: TF76

Transformation of the spine in Mg-treated non-quenched and tempered steel

  • 摘要: 基于镁改质非调质钢中夹杂物的形成特征规律,通过计算MgAl2O4与MnS间的错配度以揭示MnS在MgAl2O4上的最佳生长面,以及计算MgAl2O4颗粒之间的主要作用力。结果表明,不添加Mg时,铸坯边部的硫化物主要呈链状沿晶界析出,铸坯中心的硫化物主要呈杆状或角状。当钢中添加Mg后,边部和中心处夹杂物主要呈球状或链状,且尺寸较小。Mg改质后铸坯边部和中心处的夹杂物尺寸均降低,中心区域夹杂物的平均面积由14.33 μm2降低到8.78 μm2,边部区域夹杂物的平均面积由3.17 μm2降低到2.99 μm2,Mg的加入使钢中夹杂物等效面积降低。MnS晶格的(110)晶面和MgAl2O4的(110)晶面晶格错配度为7.65%。腔桥力是MgAl2O4颗粒黏附的作用力,腔桥力约为1×10−8 N。
  • 图  1  铸坯中不同位置处夹杂物金相照片

    Figure  1.  Metallographic photos of the inclusions at different locations in the as-cast slab

    图  2  改质前后夹杂物的二维分布形貌

    Figure  2.  Two-dimensional distributions and morphologies of the inclusions before and after Mg modification

    图  3  MgAl2O4-MnS复合夹杂物的二维形貌及面扫图片

    Figure  3.  Two-dimensional morphology and elemental mappings of the MgAl2O4-MnS composite inclusion

    图  4  计算模型示意

    Figure  4.  Schematic diagram of calculation model

    图  5  不同作用力与颗粒尺寸大小的关系

    Figure  5.  The relationship between different action forces and particle sizes

    表  1  F45Mn30非调质钢主要化学成分

    Table  1.   Main chemical compositions of F45Mn30 non-quenched and tempered steel %

    CSiMnPSAlMg[O]T
    0.4560.1431.4200.01120.0880.0070.00110.0015
    下载: 导出CSV

    表  2  MgAl2O4和MnS晶格错配度计算结果

    Table  2.   Calculation results for lattice mismatch of MgAl2O4 and MnS inclusions.

    [hkl]s[hkl]nd[hkl]sd[hkl]nθ晶格错配度/%
    (110)MnS//(110)MgAl2O4 [001] [−1-12] 2.625 2.796
    [−111] [−1-10] 4.558 4.915 0 7.65
    [−110] [001] 3.695 3.015
    (100)MnS//(100)MgAl2O4 [001] [011] 2.256 4.702
    [−111] [010] 3.711 8.040 0 16.08
    [010] [01-1] 2.190 4.672
    (111)MnS//(111)MgAl2O4 [−110] [−110] 3.695 4.682
    [−122] [−122] 6.409 9.799 0 31.34
    [−101] [−101] 3.695 4.702
    下载: 导出CSV
  • [1] Xie J B, Zhang D, Yang Q K, et al. Exploration of morphology evolution of the inclusions in Mg-treated 16MnCrS5 steel[J]. Ironmaking and Steelmaking, 2019,6(46):564−573.
    [2] Guo Dengyang, Wu Xiaodong, Chen Ruilong, et al. Research on precipitation of inclusions in calcium-treated sulfur- containing 20CrMo gear steel[J]. Iron Steel Vanadium Titanium, 2012,33(6):69−73. (郭登仰, 吴晓东, 陈瑞泷, 等. 钙处理含硫20CrMo齿轮钢夹杂物析出研究[J]. 钢铁钒钛, 2012,33(6):69−73. doi: 10.7513/j.issn.1004-7638.2012.06.015
    [3] Jiang Z H, Zhang Y, Yang L I, et al. Effect of modification treatment on inclusions in 430 stainless steel by Mg-Al alloys[J]. Journal of Iron and Steel Research International, 2013,20(5):6−10. doi: 10.1016/S1006-706X(13)60089-8
    [4] Zhang T S, Wang D Y, Liu C W, et al. Modification of inclusions in liquid iron by Mg treatment[J]. Journal of Iron and Steel Research International, 2014,21(s1):99−103.
    [5] Wang Junhua, Piao Fengyun, Yu Yongchun, et al. Industrial production process of unquenched steel front axle for heavy automobile[J]. Journal of University of Science and Technology Beijing, 2007,29(S1):105−111. (王俊华, 朴峰云, 于咏春, 等. 重型汽车专用非调质钢前轴工业性生产工艺[J]. 北京科技大学学报, 2007,29(S1):105−111.
    [6] Luo S J, Su Y H, Lu M J, et al. EBSD analysis of magnesium addition on inclusion formation in SS400 structural steel[J]. Materials Characterization, 2013,82:103−112. doi: 10.1016/j.matchar.2013.05.013
    [7] Fan Tian, Yang Qiankun, Xie Jianbo, et al. Effect of Mg on the inclusions in 20CrMo gear steel[J]. Iron Steel Vanadium Titanium, 2019,40(6):149−154. (樊田, 杨乾坤, 谢剑波, 等. 镁对20CrMo齿轮钢中夹杂物的影响[J]. 钢铁钒钛, 2019,40(6):149−154.
    [8] Ai Kenan, Xie Jianbo, Zeng Zhiqi, et al. Effect of Mg on microstructure and sulfide in non-quenched and tempered steel[J]. Journal of Iron and Steel Research, 2019,31(4):361−367. (艾克南, 谢剑波, 曾志崎, 等. 镁对非调质钢中组织及硫化物的影响[J]. 钢铁研究学报, 2019,31(4):361−367.
    [9] Xiao Guohua, Dong Han, Wang Maoqiu, et al. Effect of Mg/Ca-treatment on morphology of sulfide in non-quenched and tempered steel[J]. Iron & Steel, 2011,46(4):65−69. (肖国华, 董瀚, 王毛球, 等. 镁和镁钙处理对非调质钢中硫化物形态的影响[J]. 钢铁, 2011,46(4):65−69.
    [10] Cao L, Wang G C, Yuan X H, et al. Thermodynamics and agglomeration behavior on spinel inclusion in Al-deoxidized steel coupling with Mg treatment[J]. Metals, 2019,9(8):900−911. doi: 10.3390/met9080900
    [11] Yuvaloshini J, Shanmugavadivu R, Ravi G. Effect of annealing on optical and structural properties of ZnS/MnS and MnS/ZnS superlattices thin films for solar energy application[J]. Optik International Journal for Light & Electron Optics, 2014,125(6):1775−1779.
    [12] Krell A, Waetzig K, Klimke J. Influence of the structure of MgO·nAl2O3 spinel lattices on transparent ceramics processing and properties[J]. Journal of the European Ceramic Society, 2012,32(11):3−9.
    [13] Bramfitt B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical and Materials Transactions B, 1970,1(7):1987−1995.
    [14] Taniguchi S, Kikuchi A. Mechanisms of collision and coagulation between fine particles in fluid[J]. Tetsu-to-hagane, 1993,78(4):527−535.
    [15] Sasai K. Interaction between alumina inclusions in molten steel due to cavity bridge force[J]. ISIJ International, 2016,56(6):1013−1022. doi: 10.2355/isijinternational.ISIJINT-2016-038
    [16] Chan D, Henry J, White L R. The interaction of colloidal particles collected at fluid interfaces[J]. Journal of Colloid and Interface Science, 1981,79(2):410−418. doi: 10.1016/0021-9797(81)90092-8
    [17] Bratko D, Curtis R A, Blanch H W, et al. Interaction between hydrophobic surfaces with metastable intervening liquid[J]. Journal of Chemical Physics, 2001,115(8):3873−3877. doi: 10.1063/1.1386926
    [18] Lei Shaolong, Jiang Min, Yang Die, et al. Effect of oxides on MnS precipitation in aluminum-deoxidized steel[J]. Journal of University of Science and Technology Beijing, 2013,35(11):1443−1449. (雷少龙, 姜敏, 杨叠, 等. Al脱氧钢中氧化物对MnS析出的影响[J]. 北京科技大学学报, 2013,35(11):1443−1449.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  87
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回