留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温合金GH4065A在高压下凝固的组织研究

李靖 税烺 周扬 张树才

李靖, 税烺, 周扬, 张树才. 高温合金GH4065A在高压下凝固的组织研究[J]. 钢铁钒钛, 2021, 42(5): 170-174. doi: 10.7513/j.issn.1004-7638.2021.05.026
引用本文: 李靖, 税烺, 周扬, 张树才. 高温合金GH4065A在高压下凝固的组织研究[J]. 钢铁钒钛, 2021, 42(5): 170-174. doi: 10.7513/j.issn.1004-7638.2021.05.026
Li Jing, Shui Lang, Zhou Yang, Zhang Shucai. Study on the microstructure of superalloy GH4065A solidified under high pressure[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 170-174. doi: 10.7513/j.issn.1004-7638.2021.05.026
Citation: Li Jing, Shui Lang, Zhou Yang, Zhang Shucai. Study on the microstructure of superalloy GH4065A solidified under high pressure[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 170-174. doi: 10.7513/j.issn.1004-7638.2021.05.026

高温合金GH4065A在高压下凝固的组织研究

doi: 10.7513/j.issn.1004-7638.2021.05.026
详细信息
    作者简介:

    李靖(1994—),男,硕士研究生,主要从事高温合金材料有关特种冶炼的研究工作, E-mail:lj19801239530@163.com

  • 中图分类号: TG132.3,TG249.2

Study on the microstructure of superalloy GH4065A solidified under high pressure

  • 摘要: 通过OM和SEM观察了以常压和加压(2 MPa)两种凝固方式下的GH4065A铸锭显微组织,以分析加压对GH4065A铸锭凝固组织的影响。结果表明,常压下的铸态GH4065A有大量疏松缩孔,微观组织中主要析出相是γ’相,偏析最为严重的元素是Nb。在2 MPa下进行凝固,可以消除大量疏松缩孔,提高铸件的致密度,并使Nb元素的残余偏析指数大大降低;加压凝固可以使合金GH4065A的二次枝晶间距低于常压铸锭,这是由于加压使相变温度升高,从而增大熔体的相变驱动力,增加结晶数目,晶粒细化。上述结果表明加压凝固在高温合金中的巨大优势和应用前景,推广到更多的高温合金牌号,以发挥压力凝固的重要价值。
  • 图  1  铸态GH4065A的取样位置

    (a)常压;(b)高压

    Figure  1.  Sampling position of as-cast GH4065A (a)normal pressure, (b)high pressure

    图  2  GH4065A的低倍组织

    (a)常压;(b)高压

    Figure  2.  Macrostructure of GH4065A (a) normal pressure, (b) high pressure

    图  3  铸态GH4065A枝晶形貌及析出相形貌

    (a)枝晶形貌;(b)析出相

    Figure  3.  (a) Dendrite morphology and (b) precipitated phase morphology of as-cast GH4065A

    图  4  铸态GH4065A不同凝固方式二次枝晶间距测量结果

    Figure  4.  Measurements of second dendrite distance of multiple locations of as-cast GH4065A

    图  5  铸态GH4065A在扫描电镜下的点扫描分析

    (a)枝晶干;(b)枝晶间

    Figure  5.  Point scanning analysis of as-cast GH4065A under scanning electron microscope (a) dendrite, (b) inter-dendrite

    表  1  GH4065A合金的名义成分[7]

    Table  1.   Nominal chemical compositions of GH4065A alloy %

    CCrCoFeTiAlNbMoWBZrNi
    0.01116.013.01.03.72.10.74.04.00.0150.05余量
    下载: 导出CSV

    表  2  常压下凝固铸锭各元素不同位置偏析系数K

    Table  2.   Segregation coefficient K of various elements in different positions of non-pressurized solidified ingot

    试样编号AlTiCrFeCoNiNbMoW
    11.042.340.860.640.911.025.621.190.60
    21.082.350.900.870.901.013.861.170.63
    30.842.980.841.040.890.9711.381.400.60
    40.971.790.961.040.950.993.381.140.78
    50.971.420.951.050.961.002.061.090.83
    60.912.940.850.740.860.9414.021.220.88
    下载: 导出CSV

    表  3  加压凝固铸锭各元素不同位置偏析系数K

    Table  3.   Segregation coefficient K of various elements in different positions of pressurized solidification ingot

    试样编号AlTiCrFeCoNiNbMoW
    11.092.190.940.990.891.003.751.230.61
    21.052.160.920.980.910.983.771.200.63
    31.112.420.850.490.871.034.781.190.55
    40.931.660.980.900.980.992.861.190.77
    50.991.610.930.800.951.012.331.120.73
    60.922.870.870.820.890.968.041.310.78
    下载: 导出CSV
  • [1] Stefanescu D M. Science and engineering of casting solidification[M]. New York: Kluwer Academic/Plenum Publishers, 2002.
    [2] Han Bo, Wu Sujun. Microstructural evolution of high manganese steel solidified under superhigh pressure[J]. Materials Letters, 2011:70(1):7-10.
    [3] 朱红春, 姜周华, 李花兵, 等. 加压技术在高品质特殊钢冶炼和凝固中的作用[J]. 钢铁, 2015, 50(11): 37-44.

    Zhu Hongchun, Jiang Zhouhua, Li Huabing, et al. Effect of pressurization technology on steel-making and solidification of high-grade special steels[J]. Iron and Steel, 2015, 50(11): 37-44.
    [4] Wang Meng, Zeng Jianmin, Huang Weidong. Adjusted pressure casting technique for precision casting of large-scale complicated & thin-wall components[J]. Foundry Technology, 2004,(5):353−358. (王猛, 曾建民, 黄卫东. 大型复杂薄壁铸件高品质高精度调压铸造技术[J]. 铸造技术, 2004,(5):353−358. doi: 10.3969/j.issn.1000-8365.2004.05.015
    [5] He Shuxian, Liu Yahui, Wang Jun, et al. Research progress of metals and alloys pressurized solidification[J]. Foundry Technology, 2017,38(6):1253−1257. (何树先, 刘雅辉, 王俊, 等. 金属与合金加压凝固研究进展[J]. 铸造技术, 2017,38(6):1253−1257.
    [6] Ghanti S B. The effects of solidification under pressure on properties of cast aluminum alloys[D]. Alabama: The University of Alabama at Birmingham, 2011.
    [7] Zhao Guangpu, Huang Shuo, Zhang Beijiang, et al. Microstructure control and mechanical properties of the newest nickel-based wrought superalloy GH4065A[J]. Journal of Iron and Steel Research, 2015,27(2):37−44. (赵光普, 黄烁, 张北江, 等. 新一代镍基变形高温合金GH4065A的组织控制与力学性能[J]. 钢铁研究学报, 2015,27(2):37−44.
    [8] Batyshev K A. Casting of aluminum alloys with pressure crystal lization. Part 2[J]. Met Sci Heat Treat, 2012,54:55−62. doi: 10.1007/s11041-012-9454-y
    [9] 苏志权, 孟照亮, 孙昌建. 真空增压铸造技术及其应用前景[J]. 特种铸造及有色合金, 2003(5): 38-40.

    Su Zhiquan, Meng Zhaoliang, Sun Changjian. Vacuum pressurized casting technology and its application prospects[J]. Special Casting & Nonferrous Alloys, 2003(5): 38-40.
    [10] Huang Shuo, Zhang Beijiang, Tian Qiang, et al. Isothermal and static oxidation behavior of superalloy GH4065A[J]. Journal of Iron and Steel Research, 2016,28(7):55−60. (黄烁, 张北江, 田强, 等. 高温合金GH4065A的恒温静态氧化行为[J]. 钢铁研究学报, 2016,28(7):55−60.
    [11] Zhang Beijiang, Zhao Guangpu, Zhang Wenyun, et al. Investigation of high performance disc alloy GH4065 and associated advanced processing techniques[J]. Acta Metallurgica Sinica, 2015,51(10):1227−1234. (张北江, 赵光普, 张文云, 等. 高性能涡轮盘材料GH4065及其先进制备技术研究[J]. 金属学报, 2015,51(10):1227−1234.
    [12] Tomasz Wojcik, Markus Rath, Ernst Kozeschnik. Characterisation of secondary phases in Ni-base superalloy Rene 65[J]. Materials Science and Technology, 2018, 34(13).
    [13] Wang Zixing, Huang Shuo, Zhang Beijiang, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy[J]. Acta Metallurgica Sinica, 2019,55(3):417−426. (王资兴, 黄烁, 张北江, 等. 高合金化GH4065镍基变形高温合金点状偏析研究[J]. 金属学报, 2019,55(3):417−426.
    [14] Sosenushkin E N, Frantsuzova L S, Kozlova E M. Effect of pressure and temperature factors on the solidification of cast iron and its structure in liquid forging[J]. Metal Science & Heat Treatment, 2015.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  24
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-21
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回