留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转炉少渣深脱磷技术工业实践

王多刚 郭培民 程乃良 夏云进

王多刚, 郭培民, 程乃良, 夏云进. 转炉少渣深脱磷技术工业实践[J]. 钢铁钒钛, 2021, 42(5): 186-191. doi: 10.7513/j.issn.1004-7638.2021.05.029
引用本文: 王多刚, 郭培民, 程乃良, 夏云进. 转炉少渣深脱磷技术工业实践[J]. 钢铁钒钛, 2021, 42(5): 186-191. doi: 10.7513/j.issn.1004-7638.2021.05.029
Wang Duogang, Guo Peimin, Cheng Nailiang, Xia Yunjin. Industrial practice of deep dephosphorization technology with less slag in converter[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 186-191. doi: 10.7513/j.issn.1004-7638.2021.05.029
Citation: Wang Duogang, Guo Peimin, Cheng Nailiang, Xia Yunjin. Industrial practice of deep dephosphorization technology with less slag in converter[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(5): 186-191. doi: 10.7513/j.issn.1004-7638.2021.05.029

转炉少渣深脱磷技术工业实践

doi: 10.7513/j.issn.1004-7638.2021.05.029
基金项目: 国家自然科学基金资助项目(52074001);钢铁联合研究基金资助项目(U15601109)。
详细信息
    作者简介:

    王多刚(1984—),男,博士研究生,高级工程师,主要从事炼钢技术研究,E-mail: wangduogang760832@baosteel.com

    通讯作者:

    郭培民(1975—),男,博士,教授级高级工程师,主要从事钢铁冶炼新工艺研究,Email: guopm@pku.org.cn

  • 中图分类号: TF713

Industrial practice of deep dephosphorization technology with less slag in converter

  • 摘要: 在梅钢250 t转炉上进行了脱磷期少渣深脱磷工业实践,研究了冶炼温度、炉渣成分、吹炼制度等参数对脱磷的影响规律。实践表明,转炉冶炼脱磷期结束时适宜的熔池温度为1 370~1 420 ℃、炉渣碱度为1.3~1.8、渣中FeO含量为18%~28%;合适的吹氧量为总氧气流量的24%~28%、废钢比为12%~16%、底吹孔数在8个以上;改进后,梅钢转炉冶炼脱磷期的平均脱磷率由不足50%提高至63.2%,实现了少渣工艺的稳定运行,2012年至2019年,少渣冶炼比例由0提高至83.7%,吨钢石灰消耗由53.3 kg降低至23.2 kg,降低了56.5%。
  • 图  1  转炉脱磷期熔池温度对脱磷率的影响

    Figure  1.  Effect of bath temperature on dephosphorization rate during dephosphorization of converter

    图  2  不同碱度下FeO含量对LP的影响

    Figure  2.  Effect of FeO content on LP under different basicity

    图  3  吹炼时间对脱磷率的影响

    Figure  3.  Effect of blowing time and dephosphorization rate

    图  4  废钢比对矿石用量和脱磷率的影响

    Figure  4.  Effect of scrap ratio on ore dosage and dephosphorization rate

    图  5  底吹孔数与脱磷率的关系

    Figure  5.  Relationship between the number of bottom blowing holes and dephosphorization rate

    图  6  2012~2019年梅钢转炉少渣冶炼比例及吨钢石灰消耗变化

    Figure  6.  The relationship between ratio of less slag smelting and consumption of lime per ton steel in Meigang from year 2012~2019

    表  1  梅钢250 t转炉冶炼参数

    Table  1.   Smelting parameters of 250 t converter in Meigang

    氧枪马赫数氧枪喷孔/个氧枪供氧强度/(m3·t−1·min−1)底吹孔数/个底吹供气强度/(m3·t−1·min−1)废钢比/%
    2.05~2.1053.4~3.6120.03~0.100~25
    下载: 导出CSV

    表  2  铁水成分

    Table  2.   Hot metal compositions

    w/%温度/℃
    CSiMnPS
    4.3~4.70.1~0.80.14~0.200.1~0.140.013~0.0651200~1450
    下载: 导出CSV

    表  3  转炉主要渣料成分

    Table  3.   Compositions of main slag material for converter

    名称w/%烧损/%
    CaOSiO2MgOTFe
    石灰88~952~53~8
    轻烧白云石55~602~534~404~10
    矿石3~562~652~9
    下载: 导出CSV

    表  4  典型半钢钢水成分

    Table  4.   Typical molten steel composition of semi steel %

    CSiMnPS
    2.80.0120.0520.0550.009
    下载: 导出CSV

    表  5  典型脱磷渣成分

    Table  5.   Typical dephosphorization slag composition %

    CaOSiO2Al2O3Fe2O3MnOMgOP2O5
    36.2821.272.1718.755.766.544.46
    下载: 导出CSV
  • [1] 中国钢铁工业年鉴编委会. 中国钢铁工业年鉴2020[M]. 北京: 冶金工业出版社, 2020.

    The Editorial Board of China Steel Yearbook. China steel yearbook 2020[M]. Beijing: Metallurgical Industry Press, 2020
    [2] Xia Yunjin, Guo Xin, Ma Weijie, et al. Effect of change of slag phase on dephosphorization of “double-slag+slag-remaining” steelmaking technology[J]. Journal of Iron and Steel Research, 2018,30(6):434−440. (夏云进, 郭鑫, 马伟杰, 等. 炉渣物相变化对“双渣+留渣”冶炼脱磷的影响研究[J]. 钢铁研究学报, 2018,30(6):434−440.
    [3] Inoue R, Suito H. Phosphorous partition between 2CaO·SiO2 particles and CaO-SiO2-FetO slags[J]. ISIJ International, 2006,46(2):174−179. doi: 10.2355/isijinternational.46.174
    [4] Suito H, Inoue R. Behavior of phosphorous transfer from CaO-FetO-P2O5(-SiO2) slag to CaO particles[J]. ISIJ International, 2006,46(2):180−187. doi: 10.2355/isijinternational.46.180
    [5] Inoue R, Suito H. Mechanism of dephosphorization with CaO-SiO2-FetO slags containing mesoscopic scale 2CaO·SiO2 particles[J]. ISIJ International, 2006,46(2):188−194. doi: 10.2355/isijinternational.46.188
    [6] Kashiwaya Y, Son P K. Growing process of crystal precipitated in the dephosphorization slag and phosphorous partition between crystal and liquid[J]. Tetsu-to-Hagané, 2009,95(3):251−257.
    [7] Fukagai S, Hamano T , Tsukihashi F. Formation reaction of phosphate compound in multi phase flux at 1573 K[J]. ISIJ Int. 2007, 47(1): 187-189.
    [8] Saito R, Matsuura H, Nakask K, et al. Microscopic formation mechanisms of P2O5-containing phase at the interface between solid CaO and molten slag[J]. Tetsu-to-Hagané, 2009,95(3):258−267.
    [9] Xia Y J, Li J, Fan D D, et al. Effects of interfacial oxygen potential and slag phase changing during slag formation process on dephosphorization behavior[J]. ISIJ Int., 2019,59(9):1519−1526. doi: 10.2355/isijinternational.ISIJINT-2019-052
    [10] Xia Y J, Li J, Fan D D, et al. Effect of adding mode of iron oxide on dephosphorization behavior with the recycling of decarburization slag[J]. Steel Research Int., 2018,89(2):1800104.
    [11] Wang Xinhua, Zhu Guosen, Li Haibo, et al. Investigation on “slag-remaining+double-slag” BOF steelmaking technology[J]. China Metallurgy, 2013,23(4):40−46. (王新华, 朱国森, 李海波, 等. 氧气转炉“留渣+双渣”炼钢工艺技术研究[J]. 中国冶金, 2013,23(4):40−46.
    [12] 陈家祥. 钢铁冶金学[M]. 北京: 冶金工业出版社, 2005: 82.

    Chen Jiaxiang. Ferrous metallurgy[M]. Beijing: Metallurgical Industry Press, 2005: 82.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  19
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回