留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛基复合材料耐磨性研究进展

钟亮 付玉 徐永东 宋运坤 王荫洋

钟亮, 付玉, 徐永东, 宋运坤, 王荫洋. 钛基复合材料耐磨性研究进展[J]. 钢铁钒钛, 2021, 42(6): 36-42. doi: 10.7513/j.issn.1004-7638.2021.06.004
引用本文: 钟亮, 付玉, 徐永东, 宋运坤, 王荫洋. 钛基复合材料耐磨性研究进展[J]. 钢铁钒钛, 2021, 42(6): 36-42. doi: 10.7513/j.issn.1004-7638.2021.06.004
Zhong Liang, Fu Yu, Xu Yongdong, Song Yunkun, Wang Yinyang. Research progress on wear resistance of titanium matrix composites[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 36-42. doi: 10.7513/j.issn.1004-7638.2021.06.004
Citation: Zhong Liang, Fu Yu, Xu Yongdong, Song Yunkun, Wang Yinyang. Research progress on wear resistance of titanium matrix composites[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 36-42. doi: 10.7513/j.issn.1004-7638.2021.06.004

钛基复合材料耐磨性研究进展

doi: 10.7513/j.issn.1004-7638.2021.06.004
基金项目: 宁波市自然科学基金项目(202003N4340)
详细信息
    作者简介:

    钟亮(1995—),男,湖北麻城人,硕士研究生,研究方向为钛合金及其复合材料,E-mail:huahu163huahu@163.com

    通讯作者:

    徐永东,男,研究员,研究方向为轻金属及其复合材料,E-mail:ydxu108@163.com

  • 中图分类号: TF823, TG146

Research progress on wear resistance of titanium matrix composites

  • 摘要: 钛合金因具有高比强度、高比模量、耐腐蚀、耐低温、无磁等性能特点而被广泛应用。然而,与传统钢铁材料相比,钛合金存在弹性模量低、耐热性能不足、耐磨性差等局限,阻碍其在航空航天、兵器行业等领域的推广应用。与钛合金相比,钛基复合材料可将基体钛合金高强塑性与增强体高模量、高耐磨的优势相结合,具有比钛合金更高的弹性模量、耐磨性及高温性能,从而满足一些高承载、抗冲击、高耐磨和高温抗氧化等极端工况条件下的使用要求。从钛基复合材料发展历程出发,对钛基复合材料耐磨性研究进展加以概述,主要介绍了钛基复合材料耐磨性表征方法和摩擦磨损行为,对钛基复合材料良好耐磨性能、高耐磨钛基复合材料的设计及TMCs表面耐磨改性技术进行阐述,最后进行总结与展望。
  • 图  1  典型TMCs摩擦磨损典型的表面形貌[22]

    Figure  1.  Typical surface morphology of TMCs friction and wear

    图  2  蜂窝状的多孔TiC/Ti-6Al-4V结构[37]

    Figure  2.  SEM images of honeycomb porous TiC/Ti-6Al-4V structure

  • [1] Jiang Hong, Zhang Xiaodan. Research and application status of titanium alloys at domestic and abroad[J]. New Material Industry, 2017,(3):7−10. (江洪, 张晓丹. 国内外钛合金研究及应用现状[J]. 新材料产业, 2017,(3):7−10. doi: 10.3969/j.issn.1008-892X.2017.03.003
    [2] Zhu Zhishou, Shang Guoqiang, Wang Xinnan, et al. Microstructure controlling technology and mechanical properties relationship of titanium alloys for aviation applications[J]. Journal of Aeronautical Materials, 2020,40(3):1−10. (朱知寿, 商国强, 王新南, 等. 航空用钛合金显微组织控制和力学性能关系[J]. 航空材料学报, 2020,40(3):1−10. doi: 10.11868/j.issn.1005-5053.2020.000086
    [3] Li Zhong, Chen Wei, Wang Xianmei, et al. The application of titanium in automobiles[J]. World Nonferrous Metals, 2010,(6):66−69. (李中, 陈伟, 王宪梅, 等. 钛在汽车上的应用[J]. 世界有色金属, 2010,(6):66−69.
    [4] Yu Zhentao, Yu Sen, Cheng Jun, et al. Development and application of novel biomedical titanium alloy materials[J]. Acta Metallurgica Sinica, 2017,53(10):1238−1264. (于振涛, 余森, 程军, 等. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017,53(10):1238−1264. doi: 10.11900/0412.1961.2017.00288
    [5] Tan Qiming, Sui Nan. Research and progress of particle-reinforced titanium matrix composites[J]. New Materials Industry, 2019,(1):59−64. (谭启明, 隋楠. 颗粒增强钛基复合材料的研究与进展[J]. 新材料产业, 2019,(1):59−64.
    [6] Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering: R, 2000,29:49−113. doi: 10.1016/S0927-796X(00)00024-3
    [7] 曲赫威. 原位自生高体积分数钛基复合材料制备及组织性能研究[D]. 北京: 机械科学研究总院, 2018.

    Qu Hewei. The research of microstructures and mechanical properties of high volume fraction titanium matrix composites prepared by in-situ synthesized method [D]. Beijing: Central Academy of Mechanical Sciences, 2018.
    [8] 赵勋. 原位自生TiC增强钛基复合材料的制备与性能研究[D]. 北京: 北京交通大学, 2019.

    Zhao Xun. Preparation and properties of in-situ TiC reinforced titanium matrix composites[D]. Beijing: Beijing Jiaotong University, 2019.
    [9] Tjong S C, Mai Y W. Processing-structure-property aspects of particulate and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 2008,68(3-4):583−601. doi: 10.1016/j.compscitech.2007.07.016
    [10] Lu W J, Zhang D, Zhang X N, et al. Microstructure and tensile properties of in situ (TiB+TiC)/Ti6242 (TiB:TiC=1:1) composites prepared by common casting technique[J]. Materials Science & Engineering A, 2001,311(1-2):142−150.
    [11] Jiao Y, Huang L J, Wang S, et al. Effects of first-scale TiBw on secondary-scale Ti5Si3 characteristics and mechanical properties of in-situ (Ti5Si3+TiBw)/Ti6Al4V composites[J]. Journal of Alloys & Compounds, 2017,704:269−281.
    [12] Chávez J, Olmos L, Jiménez O, et al. Sintering behaviour and mechanical characterisation of Ti64/x TiN composites and bilayer components[J]. Powder Metallurgy, 2017,60(4):257−266. doi: 10.1080/00325899.2017.1280585
    [13] Lai Xiaojun, Li Shaopeng, Han Yuanfei, et al. Progress on composite design and development of advanced processing technology of multi-phase and multi-scale reinforced titanium matrix composites[J]. Titanium Industry Progress, 2020,37(3):40−48. (来晓君, 李劭鹏, 韩远飞, 等. 多元多尺度增强钛基复合材料复合设计与先进加工技术研究进展[J]. 钛工业进展, 2020,37(3):40−48.
    [14] 刘正林. 摩擦学原理[M]. 北京: 高等教育出版社, 2009.

    Liu Zhenglin. Principles of tribology[M]. Beijing: Higher Education Press, 2009.
    [15] Archard J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics, 1953,24(8):981−988. doi: 10.1063/1.1721448
    [16] Larsen-Basse J. Basic theory of solid friction[J]. Materials Park, OH:ASM International, 1992:27−36.
    [17] 孙亮. 原位自生(TiC+TiB)增强钛基复合材料组织调控与耐磨性[D]. 沈阳: 沈阳工业大学, 2018.

    Sun Liang. Microstructure control and wear resistance of (TiC+TiB) reinforced titanium matrix composites synthesized using in-situ technology [D]. Shenyang: Shenyang University of Technology, 2018.
    [18] Gürbüz M, Mutuk T, Uyan P. Mechanical, wear and thermal behaviors of graphene reinforced titanium composites[J]. Metals and Materials International, 2020,118:1−9.
    [19] Farias I, Olmos L, Jimenez O, et al. Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering[J]. Transactions of Nonferrous Metals Society of China, 2019,29(8):1653−1664. doi: 10.1016/S1003-6326(19)65072-7
    [20] Xie H, Jin Y, Niu M, et al. Effect of multilayer graphene/nano-Fe2O3 composite additions on dry sliding wear behavior of titanium matrix composites[J]. Journal of Iron and Steel Research International, 2020,27(9):1117−1126. doi: 10.1007/s42243-020-00460-7
    [21] Choi B J. Effect of contact load on wear property of (TiB+TiC) particulates reinforced titanium matrix composites[J]. Journal of Korea Foundry Society, 2017,37(4):115−122.
    [22] An Q, Huang L, Jiang S, et al. Two-scale TiB/Ti64 composite coating fabricated by two-step process[J]. Journal of Alloys and Compounds, 2018,755:29−40. doi: 10.1016/j.jallcom.2018.05.002
    [23] He Bo, Lan Jiaojiao, Yang Guang, et al. Microstructure and wear-resistant properties of in situ TiB-TiC reinforced titanium matrix composites by laser deposition manufacturing[J]. Rare Metal Materials and Engineering, 2017,377(12):233−238. (何波, 兰姣姣, 杨光, 等. 激光原位合成TiB-TiC颗粒增强钛基复合材料的组织与其耐磨性能[J]. 稀有金属材料与工程, 2017,377(12):233−238.
    [24] Zheng B, Dong F, Yuan X, et al. Evaluation on tribological characteristics of (TiC+TiB)/Ti–6Al–4V composite in the range from 25 °C to 600 °C[J]. Wear, 2020:203−256.
    [25] Zheng B, Dong F, Yuan X, et al. Insights into wear behavior of (TiC+TiB)/TC4 composites against different counterface materials[J]. Materials Research Express, 2019,6(11):116584. doi: 10.1088/2053-1591/ab4bac
    [26] 王健硕. 钛基Y-PSZ/Ti颗粒增强复合材料的研究[D]. 沈阳: 沈阳理工大学, 2020.

    Wang Jianshuo. Titanium-based matrix Y-PSZ/ Ti particle reinforced composites research [D]. Shenyang: Shenyang University of Technology, 2020.
    [27] Liu Y Y, Yao Z, Zhang S, et al. The formation mechanism and wear behavior of TiC+ Ti3SiC2+ Ti5Si3 reinforced Ti6Al4V with network microstructure fabricated by electron beam melting[J]. Materials Research Express, 2019,6(9):0965c3. doi: 10.1088/2053-1591/ab0b5a
    [28] Wang Wei, Zhou Haixiong, Wang Qingjuan, et al. Tribological properties of graphene reinforced titanium matrix composites[J]. Ordnance Material Science and Engineering, 2019,42(1):26−32. (王伟, 周海雄, 王庆娟, 等. 石墨烯增强钛基复合材料的摩擦学性能研究[J]. 兵器材料科学与工程, 2019,42(1):26−32.
    [29] Salehikahrizsangi P, Karimzadeh F, Enayati M H, et al. Investigation of the effects of grain size and nano-sized reinforcements on tribological properties of Ti6Al4V alloy[J]. Wear, 2013,305(1-2):51−57. doi: 10.1016/j.wear.2013.05.008
    [30] Yang B, Lujun H, Qi A, et al. Wire-feed deposition TiB reinforced Ti composite coating: Formation mechanism and tribological properties[J]. Materials Letters, 2018,229:221−224. doi: 10.1016/j.matlet.2018.07.022
    [31] 王玉林. TiC/Ti 基复合材料摩擦磨损性能与氧化行为的研究[D]. 长沙: 中南大学, 2011.

    Wang Yulin. Friction and wear properties of TiC particle reinforced titanium matrix composite [D]. Changsha: Central South University, 2011.
    [32] Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of polycrystals[J]. Journal of the Mechanics & Physics of Solids, 1962,10(4):343−352.
    [33] 焦阳. 两级网状结构(Ti5Si3+TiBw)/Ti6Al4V复合材料研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    Jiao Yang. Research on (Ti5Si3+TiBw)/Ti6Al4V composites with two-level network structure[D]. Harbin: Harbin Institute of Technology, 2018.
    [34] Mu X N, Zhang H M, Cai H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science and Engineering: A, 2017,687:164−174. doi: 10.1016/j.msea.2017.01.072
    [35] Su Ying, Zuo Qian, Yang Gang, et al. Compressive properties of the grahpene reinforced titanium composites[J]. Rare Metal Materials and Engineering, 2017,46(12):3882−3886. (苏颖, 左倩, 杨刚, 等. 石墨烯增强钛基复合材料的压缩变形行为研究[J]. 稀有金属材料与工程, 2017,46(12):3882−3886.
    [36] Cai C, Song B, Qiu C, et al. Hot isostatic pressing of in-situ TiB/Ti-6Al-4V composites with novel reinforcement architecture, enhanced hardness and elevated tribological properties[J]. Journal of Alloys and Compounds, 2017,710:364−374. doi: 10.1016/j.jallcom.2017.03.160
    [37] Bai M, Mohsen R, Xu Y, et al. In-situ Ti-6Al-4V/TiC composites synthesized by reactive spark plasma sintering: processing, microstructure, and dry sliding wear behaviour[J]. Wear, 2019,432-433:202944. doi: 10.1016/j.wear.2019.202944
    [38] Xu X, Liu Y, Tabie V, et al. High-temperature oxidation resistance of a Ti–Al–Sn–Zr titanium matrix composites reinforced with in situ TiC and Ti5Si3 fabricated by powder metallurgy[J]. Applied Physics A, 2020,126(4):1−10.
    [39] Odetola P I, Ajenifuja E, Popoola A P I, et al. Effects of silicon carbide contents on microstructure and mechanical properties of spark plasma–sintered titanium-based metal matrix[J]. The International Journal of Advanced Manufacturing Technology, 2019,105(5-6):2491−2500. doi: 10.1007/s00170-019-04317-6
    [40] Zhang F, Du M, Fan K, et al. Fabrication and mechanical properties of network structured titanium alloy matrix composites reinforced with Ti2AlC particulates[J]. Materials Science and Engineering, 2020,776(3):139065.1−139065.9.
    [41] 李争显, 王少鹏, 慕伟意, 等. 钛表面处理技术的研究现状[C]// 第十届全国表面工程大会暨第六届全国青年表面工程论文集. 武汉: 中国机械工程学会, 中国表面工程协会, 2014: 76.

    Li Zhengxian, Wang Shaopeng, Mu Weiyi, et al. Research status of titanium surface treatment technology [C]//Proceedings of the 10th Nationnal Surface Engineering Conference and 6th National Youth Surface Engineering Forum. Wuhan: Chinese Society of Mechanical Engineering, China Surface Engineering Association, 2014: 76.
    [42] 陆伟. 钛表面激光熔覆纳米碳管组织与性能的研究[D]. 大连: 大连理工大学, 2014.

    Lu Wei. Study on microstructure and properties of laser cladding titanium with CNTs[D]. Dalian: Dalian University of Technology, 2014.
    [43] 姬寿长, 李京龙, 李争显, 等. TC21钛合金表面处理技术的研究现状[J/OL]. 热加工工艺, 2021(4): 17-20, 24[2021-03-01]. https://doi.org/10.14158/j.cnki.1001-3814.20192423.

    Ji Shouchang, Li Jinglong, Li Zhengxian, et al. Research status surface treatment technology on TC21 titanium alloy [J/OL]. Hot Working Process, 2021 (4): 17-20, 24. [2021-03-01] https://doi.org/10.14158/j.cnki.1001-3814.20192423.
    [44] Wang Qinghong, Wang Hongying. Wear resistance of surface layer of TC4 alloy after laser surface modification[J]. Casting Technology, 2015,(1):8. (王庆红, 王红英. 激光表面改性后TC4钛合金的表面层耐磨性分析[J]. 铸造技术, 2015,(1):8.
    [45] Huang Xueli, Tan Junguo, Zhang Tengfei, et al. Deposition and anti-wear/corrosion properties of nano-multilayer TiN/CrN films on titanium alloy[J]. Materials Guide, 2021,35(4):4139−4143. (黄雪丽, 谭君国, 张腾飞, 等. 钛合金表面TiN/CrN纳米多层薄膜的制备及耐磨、耐腐蚀性能[J]. 材料导报, 2021,35(4):4139−4143. doi: 10.11896/cldb.19070256
    [46] Liu Yuancai, Sun Qisheng, Liu Zhiyuan, et al. Effect of BN on micro arc oxidation film and wear resistance of TB8 titanium alloy[J]. Journal of Qingdao University of Technology, 2020,41(6):102−107. (刘元才, 孙启胜, 刘志远, 等. 氮化硼对TB8钛合金微弧氧化膜及其耐磨性的影响[J]. 青岛理工大学学报, 2020,41(6):102−107. doi: 10.3969/j.issn.1673-4602.2020.06.015
    [47] Yang Yucheng, Pan Yu, Lu Xin, et al. Research progress on particle-reinforced titanium matrix composites prepared by powder metallurgy method[J]. Powder Metallurgy Technology, 2020,(2):11. (杨宇承, 潘宇, 路新, 等. 粉末冶金法制备颗粒增强钛基复合材料的研究进展[J]. 粉末冶金技术, 2020,(2):11.
    [48] Al-Sayed Ali S R, Hussein A H A, Nofal A A M S, et al. Laser powder cladding of Ti-6Al-4V α/β alloy[J]. Materials, 2017,10(10):1178. doi: 10.3390/ma10101178
  • 加载中
图(2)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  45
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-15
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回