留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛合金焊接过程防氧化保护技术进展

樊立民 耿乃涛 杨柳 武少杰 程方杰

樊立民, 耿乃涛, 杨柳, 武少杰, 程方杰. 钛合金焊接过程防氧化保护技术进展[J]. 钢铁钒钛, 2021, 42(6): 43-50. doi: 10.7513/j.issn.1004-7638.2021.06.005
引用本文: 樊立民, 耿乃涛, 杨柳, 武少杰, 程方杰. 钛合金焊接过程防氧化保护技术进展[J]. 钢铁钒钛, 2021, 42(6): 43-50. doi: 10.7513/j.issn.1004-7638.2021.06.005
Fan Limin, Geng Naitao, Yang Liu, Wu Shaojie, Cheng Fangjie. Progress of anti-oxidation protection technology in titanium alloy welding process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 43-50. doi: 10.7513/j.issn.1004-7638.2021.06.005
Citation: Fan Limin, Geng Naitao, Yang Liu, Wu Shaojie, Cheng Fangjie. Progress of anti-oxidation protection technology in titanium alloy welding process[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 43-50. doi: 10.7513/j.issn.1004-7638.2021.06.005

钛合金焊接过程防氧化保护技术进展

doi: 10.7513/j.issn.1004-7638.2021.06.005
基金项目: 天津市科计划项目(编号:18ZXJMTG00140)
详细信息
    作者简介:

    樊立民(1995—),男,河北石家庄人,硕士研究生,长期从事钛合金焊接工艺研究,E-mail:1165286830@qq.com

    通讯作者:

    程方杰,博士,教授,E-mail:chfj@tju.edu.cn

  • 中图分类号: TF823,TG422

Progress of anti-oxidation protection technology in titanium alloy welding process

  • 摘要: 钛及钛合金综合性能优异,但由于高温活性强导致焊接氧化问题严重,特别是在很低的固态温度下仍然吸收气体影响焊接接头质量,因此需要严格的焊接保护措施。在分析了钛合金的氧化机理及特性的基础上,系统总结了焊接过程中的各种防氧化保护措施和具体技术。详细介绍了钛合金长直焊缝、环形焊缝、空间不规则焊缝以及增材制造四种典型过程的防氧化保护问题,主要的防护措施有保护拖罩、封闭式充氩环境以及强制冷却三大类。针对钛合金长直焊缝局部气体保护,一般形式为保护拖罩结合背面保护气槽以及水冷措施;对于环形焊缝的背面保护方式,可以采用背面拖罩或者整体充氩保护的方法,其正面保护采用弧形拖罩即可;而不规则焊缝受限于空间形状,焊接拖罩的方法不再适用,小尺寸构件可采用简易充氩保护箱,大尺寸构件保护问题亟待解决;增材制造过程中的热积累问题也对其保护形式提出了更高的要求,目前采用具有一定气体挺度的层流惰性气体和CO2跟随强制冷却的方式取得了较好的效果。
  • 图  1  长直焊缝焊接保护装置示意

    Figure  1.  Schematic of long-straight welding seam shielding device

    图  2  环缝焊接同步式背面拖罩保护示意

    Figure  2.  Schematic of synchronous backside trailing shields for circular welding

    图  3  管道全位置等离子弧自动焊接设备

    1-剖分式轨道装置;2-焊接小车行走机构;3-背面保护及观察装置;4-等离子弧焊接设备;5-控制系统

    Figure  3.  Structure of full-position plasma arc automatic welding equipment

    图  4  环缝焊接封闭式充氩保护示意

    Figure  4.  Schematic of closed Ar-filled trailing shields for circular welding

    图  5  粗细两管相贯线焊接

    1—出气管; 2、6、7—堵塞器; 3—粗管;4—细管; 5、8—进气管; 9—出气口流线

    Figure  5.  Intersecting line welding of two different diameter pipes

    图  6  支撑环组件背面保护示意

    Figure  6.  Schematic of back protection of support ring component

    图  7  不同拖罩保护条件示意

    Figure  7.  Schematics of the different trailing shield configurations

    图  8  层流局部保护装置设计

    Figure  8.  Laminar flow local shielding device design

    图  9  采用层间强制冷却措施的非熔化极电弧增材制造系统示意

    Figure  9.  Schematic diagram of the GT-WAAM deposition system with forced interpass cooling

    图  10  Ti6Al4V增材试样的表面外观

    Figure  10.  The surface appearance of Ti6Al4V parts fabricated at different conditions

    表  1  固态氧化试验结果[9]

    Table  1.   Results of solid oxidation experiment

    加热温度/℃保温时间/min接头颜色弯曲角/(°)
    测量值平均值
    40030100~129113
    5003090~11297
    60030102~110106
    70030灰红94~116107
    80030灰白(浅)88~11899
    90030灰白(深)87~109104
    下载: 导出CSV

    表  2  钛焊缝表面不同氧化颜色的情况对比[11]

    Table  2.   Comparison of different oxidation colors on titanium weld surface

    焊缝表面颜色污染程度对接头质量影响处理措施
    银白色几乎不存在有害气体的污染无影响
    浅黄、金黄色轻微污染对接头机械性能影响不大
    淡蓝一般性污染略有影响不锈钢丝纶刷除
    紫蓝、深蓝色污染较严重接头弯曲角下降去除焊道及邻近金属,重新焊接
    灰色或黄色粉末严重污染焊接区脆化完全去除焊道和热影响区,检查保护、供气系统,试验测试后重新焊接
    下载: 导出CSV
  • [1] Li Xingyu, Li Fang, Mou Gang, et al. Welding of titanium and titanium alloy[J]. Electric Welding Machine, 2017,47(4):67−70. (李兴宇, 李芳, 牟刚, 等. 钛及钛合金的焊接[J]. 电焊机, 2017,47(4):67−70.
    [2] Cui C, Hu B, Zhao L, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials & Design, 2011,32(3):1684−1691.
    [3] Choi B H, Choi B K. The effect of welding conditions according to mechanical properties of pure titanium[J]. Journal of Materials Processing Technology, 2008,201(1):526−530.
    [4] Costa A, Miranda R, Quintino L, et al. Analysis of beam material interaction in welding of titanium with fiber lasers[J]. Materials and Manufacturing Processes, 2007,22(7):798−803.
    [5] Liu Shunhong, Peng Shande, Xiang Fan. Research on laser lap welding of TC4 titanium alloy[J]. Electric Welding Machine, 2006,(6):24−29. (刘顺洪, 彭善德, 项凡. TC4钛合金激光搭接焊的研究[J]. 电焊机, 2006,(6):24−29. doi: 10.3969/j.issn.1001-2303.2006.06.010
    [6] Chen Sijie, Zhu Chunli. Research on advanced connecting technology of titanium and titanium alloy[J]. Hot Working Process, 2015,44(3):18−21. (陈思杰, 朱春莉. 钛及钛合金先进连接技术研究[J]. 热加工工艺, 2015,44(3):18−21.
    [7] Chen Guangfeng, Guo Fenying. Development and application of inert gas integral protective welding equipment[J]. Welding, 2000,(9):20−22. (陈光锋, 郭奋颖. 惰性气体整体保护焊接设备的研制及应用[J]. 焊接, 2000,(9):20−22. doi: 10.3969/j.issn.1001-1382.2000.09.005
    [8] 罗辉, 郝丽萍, 魏祚伟. 钛合金氧化性能研究[C]//第九次全国焊接会议. 天津: 中国机械工程学会焊接分会, 1999.

    Luo Hui, Hao Liping, Wei Zuowei. Study on oxidation properties of titanium alloys [C]//The 9th National Welding Conference. Tianjing: Welding Branch of China Society of Mechanical Engineering, 1999.
    [9] Room 23, 621 Research Institute. Research on welding oxidation of titanium alloy[J]. Aviation Technology, 1997,(7):3−7. (六二一研究所二十三室. 钛合金焊接氧化问题的研究[J]. 航空工艺技术, 1997,(7):3−7.
    [10] Jia Zhiqiang, Zeng Weidong, Zhang Yaowu, et al. Effect of oxidation treatment on oxidation color and mechanical properties of TC21 titanium alloy[J]. Rare Metal Materials and Engineering, 2013,42(1):49−53. (贾志强, 曾卫东, 张尧武, 等. 氧化处理对TC21钛合金氧化色及力学性能的影响[J]. 稀有金属材料与工程, 2013,42(1):49−53. doi: 10.3969/j.issn.1002-185X.2013.01.010
    [11] Ting Wang. Welding problems and countermeasures of marine titanium and titanium alloy[J]. Ship Science and Technology, 2011,33(6):113−116. (汀 汪. 船用钛及钛合金的焊接问题及对策[J]. 舰船科学技术, 2011,33(6):113−116. doi: 10.3404/j.issn.1672-7649.2011.06.026
    [12] Zou Shuai. Patent analysis of gas protection technology for titanium alloy welding[J]. Chemical Industry Management, 2018,(19):23−25. (邹帅. 钛合金焊接气体保护技术的专利分析[J]. 化工管理, 2018,(19):23−25. doi: 10.3969/j.issn.1008-4800.2018.19.015
    [13] Zhang Yong, Yang Jianguo, Liu Xuesong, et al. Design of jet protection welding tooling for TIG welding of thin plate[J]. Welding & Joining, 2009,(10):46−49. (张勇, 杨建国, 刘雪松, 等. TC4薄板TIG焊喷流保护焊接工装的设计[J]. 焊接, 2009,(10):46−49. doi: 10.3969/j.issn.1001-1382.2009.10.010
    [14] Shi J, Song G, Chi J. Effect of active gas on weld appearance and performance in laser-TIG hybrid welded titanium alloy[J]. International Journal of Lightweight Materials and Manufacture, 2018,1:47−53. doi: 10.1016/j.ijlmm.2018.03.002
    [15] Bendikiene R, Baskutis S, Baskutiene J, et al. Comparative study of TIG welded commercially pure titanium[J]. Journal of Manufacturing Processes, 2018,36:155−163. doi: 10.1016/j.jmapro.2018.10.007
    [16] Hu Xukun, Ma Anguo, Zhang Pengfei, et al. Improvement and application of inert gas protection devices for welding zirconium alloy plates[J]. Metal World, 2019,(4):64−66. (胡旭坤, 马安国, 张鹏飞, 等. 锆合金板材焊接惰性气体保护装置的改进和应用[J]. 金属世界, 2019,(4):64−66. doi: 10.3969/j.issn.1000-6826.2019.04.016
    [17] Shi Fangle, Huang Lei. Design of Ti and Ti-alloy tube TIG arc welding protective cover[J]. Mechanical and Electrical Equipment, 2019,36(1):36−38. (施方乐, 黄雷. 钛及钛合金管氩弧焊焊接保护罩设计[J]. 机电设备, 2019,36(1):36−38.
    [18] Yang Qinghua. Improve the welding quality of titanium tube with self-made argon-filled protective cover[J]. Install, 2002,(1):20−21. (杨庆华. 利用自制充氩保护罩提高钛管焊接质量[J]. 安装, 2002,(1):20−21. doi: 10.3969/j.issn.1002-3607.2002.01.011
    [19] Bin Gao, Deng Qilin, Zhou Chunyan. Research on gas protection in laser welding of titanium alloy[J]. Electrical Machining and Die, 2009,(5):44−49. (宾 高, 邓琦林, 周春燕. 钛合金激光焊接过程中气体保护问题的研究[J]. 电加工与模具, 2009,(5):44−49. doi: 10.3969/j.issn.1009-279X.2009.05.011
    [20] 刘帛炎. 钛合金管道全位置等离子弧焊焊缝成形及组织性能研究 [D]. 沈阳: 沈阳工业大学, 2019.

    Liu Boyan. Research on welding seam forming and microstructure performance by full-position plasma arc welding of titanium alloy pipeline [D]. Shenyang : Shenyang University of Technology, 2019.
    [21] Guo Chunfu, Liu Boyan, Sun Weiqiang, et al. All-position plasma arc automatic welding equipment for pipelines[J]. Research and Application of Materials, 2017,11:251−255. (郭春富, 刘帛炎, 孙伟强, 等. 管道全位置等离子弧自动焊接设备[J]. 材料研究与应用, 2017,11:251−255. doi: 10.3969/j.issn.1673-9981.2017.04.009
    [22] Guo Chunfu, Liu Boyan, Dong Chunlin, et al. TC4 Full-position PAW technology and joint performance analysis[J]. Journal of Welding, 2019,40:121−126. (郭春富, 刘帛炎, 董春林, 等. TC4厚壁管全位置PAW工艺及接头性能分析[J]. 焊接学报, 2019,40:121−126. doi: 10.12073/j.hjxb.2019400193
    [23] 李小书. 钛合金导管焊接保护研究[C]//第二届中国北方焊接学术会议. 西安: 中国机械工程学会焊接分会, 2001.

    Li Xiaoshu. Research on titanium alloy pipe welding protection [C]//The Second North China Welding Academic Conference. Xi’an: Welding Branch of China Society of Mechanical Engineering, 2001.
    [24] Zhang Junling, Shi Xiaogang, Wang Xiaoyun. Argon shielding for welding of high alloy stainless steel and heat resisting steel tube[J]. Petrochemical Equipment, 2012,41:70−72. (张俊玲, 石小刚, 王孝云. 高合金不锈钢和耐热钢管焊接氩气保护罩[J]. 石油化工设备, 2012,41:70−72. doi: 10.3969/j.issn.1000-7466.2012.01.018
    [25] 司松社. 某机钛合金熔焊缝防表面氧化工艺研究[C]//中国航空学会学术年会. 深圳: 中国航空学会, 2007.

    Si Songshe. Research on anti-surface oxidation technology of titanium alloy fusion welding joint of a machine [C]//The Annual Academic Conference of The Aviation Society of China. Shenzhen: The Aviation Society of China, 2007.
    [26] Bermingham M J, Thomson-larkins J, St John D H, et al. Sensitivity of Ti-6Al-4V components to oxidation during out of chamber wire+arc additive manufacturing[J]. Journal of Materials Processing Technology, 2018,258:29−37. doi: 10.1016/j.jmatprotec.2018.03.014
    [27] Ding J, Colegrove P, Martina F, et al. Development of a laminar flow local shielding device for wire + arc additive manufacture[J]. Journal of Materials Processing Technology, 2015,226:99−105. doi: 10.1016/j.jmatprotec.2015.07.005
    [28] Wu B, Pan Z, Ding D, et al. The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy[J]. Journal of Materials Processing Technology, 2018,258:97−105. doi: 10.1016/j.jmatprotec.2018.03.024
    [29] Wu B, Pan Z, Chen G, et al. Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling[J]. Science and Technology of Welding and Joining, 2019,24:484−494. doi: 10.1080/13621718.2019.1580439
    [30] Ding Donghong, Pan Zengxi, Qiu Zhijun, et al. Wire arc additive manufacturing of Ti6Al4V using active interpass cooling[J]. Materials and Manufacturing Processes, 2020,35(7):845−851. doi: 10.1080/10426914.2020.1732414
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  34
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回