留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阴极结构对熔盐电脱氧法制备金属钛影响及杂质研究

辛学松 张强 张姗姗 张敏

辛学松, 张强, 张姗姗, 张敏. 阴极结构对熔盐电脱氧法制备金属钛影响及杂质研究[J]. 钢铁钒钛, 2021, 42(6): 59-65. doi: 10.7513/j.issn.1004-7638.2021.06.007
引用本文: 辛学松, 张强, 张姗姗, 张敏. 阴极结构对熔盐电脱氧法制备金属钛影响及杂质研究[J]. 钢铁钒钛, 2021, 42(6): 59-65. doi: 10.7513/j.issn.1004-7638.2021.06.007
Xin Xuesong, Zhang Qiang, Zhang Shanshan, Zhang Min. Study on the effect of molten salt electro-deoxidation on the preparation of titanium metal[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 59-65. doi: 10.7513/j.issn.1004-7638.2021.06.007
Citation: Xin Xuesong, Zhang Qiang, Zhang Shanshan, Zhang Min. Study on the effect of molten salt electro-deoxidation on the preparation of titanium metal[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 59-65. doi: 10.7513/j.issn.1004-7638.2021.06.007

阴极结构对熔盐电脱氧法制备金属钛影响及杂质研究

doi: 10.7513/j.issn.1004-7638.2021.06.007
基金项目: 国家自然科学基金(51764007)资助项目。
详细信息
    作者简介:

    辛学松(1977—),男,河南商丘人,本科,实验师,主要研究方向为钛资源综合利用,E-mail:1179045396@qq.com

    通讯作者:

    张强(1994—),男,硕士,助教,主要研究方向为资源综合利用、冶金过程中多相模拟,E-mail:861638378@qq.com

  • 中图分类号: TF823

Study on the effect of molten salt electro-deoxidation on the preparation of titanium metal

  • 摘要: 在高纯氩气气氛下,在CaCl2熔盐中电解高钛渣制备金属钛,研究了成型压力与阴极片孔隙率的关系以及对电解过程的影响,并采用 XRD、 SEM等分析手段对阴极片及电解后的物相和微观形貌结构进行表征。结果表明:成型压力对阴极片孔隙率有直接影响,随着成型压力升高,阴极孔隙率下降;阴极片的孔隙率直接影响电脱氧过程,适当的孔隙率有利于形成中间产物CaTiO3和提高电还原速率。4 MPa压制的阴极1050 ℃烧结2 h,孔隙率为34.79%,电解12 h 产物氧含量降低至1.75%,钛含量为95.72%,此时阴极片的电化学性能较好。
  • 图  1  电解装置示意

    Figure  1.  Schematic diagram of the electrolysis cell

    图  2  不同成型压力下阴极的SEM形貌

    (a) 2 MPa;(b) 4 MPa;(c) 6 MPa;(d) 8 MPa

    Figure  2.  SEM images of the cathodes under different molding pressure

    图  3  阴极孔隙率和密度随成型压力变化关系

    Figure  3.  Plot of the cathode porosity and density as a function of the forming pressure

    图  4  不同压力制备阴极1050 ℃烧结后的SEM形貌

    (a) 2 MPa;(b) 4 MPa;(c) 6 MPa;(d) 8 MPa

    Figure  4.  SEM images of the cathodes sintered at 1 050 ℃ at different pressures

    图  5  不同成型压力阴极产物的XRD物相

    Figure  5.  XRD spectra of the cathode products under different pressures

    图  6  不同压力下阴极电解产物的SEM形貌

    Figure  6.  SEM images of the cathode products at different pressure

    (a) 2 MPa;(b) 4 MPa;(c) 6 MPa;(d) 8 MPa

    图  7  不同成型压力阴极电流—时间曲线

    Figure  7.  The current-time curve under different molding pressures

    图  8  吉布斯自由能和标准电解电压随温度变化曲线

    Figure  8.  Plot of the change of Gibbs free energy and standard electrolytic voltage with temperature

    表  1  高钛渣化学成分

    Table  1.   Chemical compositions of the high titanium slag %

    OAlSiTiFeCa
    47.452.261.9438.538.611.21
    下载: 导出CSV

    表  2  不同压力电解后的阴极化学成分

    Table  2.   Chemical composition of the cathodes after electrolysis under different pressure

    成型压力/MPaw/%
    OAlSiTiFeCa
    2 5.43 0.71 1.09 90.56 1.71 0.50
    4 1.75 0.49 0.76 95.72 0.80 0.48
    6 3.96 0.45 1.03 93.14 0.92 0.54
    8 4.29 0.57 1.05 93.06 0.47 0.56
    下载: 导出CSV

    表  3  各处理过程的杂质元素含量

    Table  3.   Impurity element content of various treatment processes mg

    FeAlSi
    杂质总量 172.2 45.2 38.8
    CaCl2熔盐 110.41 36.21 26.54
    HCl洗涤液 35.12 5.32 6.24
    尾气吸收液 1.2 0.62 0.53
    下载: 导出CSV
  • [1] Zhang Xiaowei, Zhang Wanyi, Tong Ying, et al. Current status and utilization trends of global titanium ore resources[J]. Mineral Conservation and Utilization, 2019,39(5):68−75. (张晓伟, 张万益, 童英, 等. 全球钛矿资源现状与利用趋势[J]. 矿产保护与利用, 2019,39(5):68−75.
    [2] Guo Li, He Weixia, Zhou Peng, et al. Research status and development prospect of titanium and titanium alloy products in China[J]. Thermal Processing Technology, 2020,49(22):22−28. (郭鲤, 何伟霞, 周鹏, 等. 我国钛及钛合金产品的研究现状及发展前景[J]. 热加工工艺, 2020,49(22):22−28.
    [3] Jia Hong, Lu Fusheng, Hao Bin. Report on the development of titanium industry in China in 2020[J]. Iron Steel Vanadium Titanium, 2021,42(3):1−9. (贾翃, 逯福生, 郝斌. 2020年中国钛工业发展报告[J]. 钢铁钒钛, 2021,42(3):1−9.
    [4] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000,407(2):361−364.
    [5] Liu S. A study of preparation of titanium metal by the electrochemical reduction of titanium dioxide in molten salt[J]. Procedia Earth & Planetary Science, 2011,2:1−6.
    [6] Liu Z W, Zhang H L, Pei L L, et al. Direct electrolytic preparation of chromium metal in CaCl2 –NaCl eutectic salt[J]. Transactions of Nonferrous Metals Society of China, 2018,28(2):376−384. doi: 10.1016/S1003-6326(18)64671-0
    [7] Barnett R P, Fray D J. Electro-deoxidation of Ta2O5 in calcium chloride–calcium oxide melts[J]. Journal of Materials Science, 2014,49(12):4148−4160. doi: 10.1007/s10853-014-8110-x
    [8] Wang Lin. Study on the preparation of magnesium-zirconium alloy by molten salt electrolysis[J]. Journal of Yunnan University for Nationalities( Natural Science Edition), 2014,23(6):420−423. (王琳. 熔盐电解制备镁锆合金工艺研究[J]. 云南民族大学学报(自然科学版), 2014,23(6):420−423.
    [9] 李泽全. TiO2熔盐电解制备钛及其反应机理的研究[D]. 重庆: 重庆大学, 2011.

    Li Zequan. Electrolytic preparation of titanium from TiO2 molten salt and its reaction mechanism[D]. Chongqing: Chongqing University, 2011.
    [10] Xu Yidong, Lu Ping, Tang Yajun. Study on the preparation of silicon powder by molten salt electrolysis[J]. Non-ferrous Metals:Smelting Part, 2012,(9):69−71. (徐义东, 卢平, 唐亚军. 熔盐电解法制备硅粉的研究[J]. 有色金属:冶炼部分, 2012,(9):69−71.
    [11] Li Zhen, Sun Jianke, Chang Pengbei, et al. Study on the performance of TiO2 electrode in the preparation of titanium metal by molten salt electrolysis[J]. Materials Direct, 2011,25(2):60−62. (李珍, 孙建科, 常鹏北, 等. 熔盐电解法制备金属钛工艺中TiO2电极性能研究[J]. 材料导报, 2011,25(2):60−62.
    [12] Zhang Zhen, Hua Yixin, Xu Cunying, et al. Preparation of TiC/SiC nanocomposite powders by electrolysis of high titanium slag/C with CaO-CaCl2-NaCl molten salt[J]. Rare Metals, 2018,(4):408−414. (张臻, 华一新, 徐存英, 等. CaO-CaCl2-NaCl熔盐电解高钛渣/C制备TiC/SiC纳米复合粉体[J]. 稀有金属, 2018,(4):408−414.
    [13] 申园园. 熔盐电解含钛废渣制备金属钛及杂质行为[D]. 贵阳: 贵州大学, 2018.

    Shen Yuanyuan. Preparation of titanium metal from titanium-containing waste slag by molten salt electrolysis and impurity behavior [D]. Guiyang: Guizhou University, 2018.
    [14] 邢伟. 熔盐电脱氧法由高钛渣制备高钛铁合金[D]. 沈阳: 东北大学, 2009.

    Xing Wei. Preparation of high titanium iron alloy from high titanium slag by molten salt electro-deoxidation [D]. Shenyang: Northeastern University, 2009.
    [15] 况文浩. 熔盐电解高钛渣制备钛硅合金的研究[D]. 昆明: 昆明理工大学, 2017.

    Kuang Wenhao. Study on the preparation of titanium-silicon alloy by molten salt electrolysis of high titanium slag[D]. Kunming: Kunming University of Science and Technology, 2017.
    [16] Li Qiang, Zhao Hui, Huo Lihua, et al. Electrode properties of Sr doped La2CuO4 as new cathode material for intermediate-temperature SOFCs[J]. Electrochemistry Communications, 2007,9(7):1508−1512. doi: 10.1016/j.elecom.2007.02.013
    [17] Xu B, Hong Y S, Mohassab Y, et al. Correction: Structures, preparation and applications of titanium suboxides[J]. RSC Advances, 2016,6(114):112737. doi: 10.1039/C6RA90124G
    [18] Liu Xuyang, Hu Meilong, Bai Chenguang, et al. Effect of electrical conductivity and porosity of cathode on electro-deoxidation process of ilmenite concentrate[J]. Rare Metal Materials & Engineering, 2017,46(5):1176−1182.
    [19] Chen Hualin, Wang Zhiyong, Jin Xianbo, et al. An ion diffusion model for solid oxide cathode processes and its validation by electrolysis of Ta2O5 molten salt[J]. Electrochemistry, 2014,(3):266−271. (陈华林, 王志勇, 金先波, 等. 固态氧化物阴极过程的离子扩散模型及其Ta2 O5熔盐电解验证[J]. 电化学, 2014,(3):266−271.
    [20] Schwandt C, Fray D J. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride[J]. Electrochimica Acta, 2006,51(1):66−76.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  18
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-21
  • 录用日期:  2021-11-19
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回