中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固溶温度对Ti6Al4V ELI钛合金显微组织及性能的影响

冉兴 王哲 李海宾 吕志刚 李培杰

冉兴, 王哲, 李海宾, 吕志刚, 李培杰. 固溶温度对Ti6Al4V ELI钛合金显微组织及性能的影响[J]. 钢铁钒钛, 2021, 42(6): 66-71. doi: 10.7513/j.issn.1004-7638.2021.06.008
引用本文: 冉兴, 王哲, 李海宾, 吕志刚, 李培杰. 固溶温度对Ti6Al4V ELI钛合金显微组织及性能的影响[J]. 钢铁钒钛, 2021, 42(6): 66-71. doi: 10.7513/j.issn.1004-7638.2021.06.008
Ran Xing, Wang Zhe, Li Haibin, Lv Zhigang, Li Peijie. Influence of solution treatment on microstructure and mechanical properties of Ti6Al4V ELI titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 66-71. doi: 10.7513/j.issn.1004-7638.2021.06.008
Citation: Ran Xing, Wang Zhe, Li Haibin, Lv Zhigang, Li Peijie. Influence of solution treatment on microstructure and mechanical properties of Ti6Al4V ELI titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 66-71. doi: 10.7513/j.issn.1004-7638.2021.06.008

固溶温度对Ti6Al4V ELI钛合金显微组织及性能的影响

doi: 10.7513/j.issn.1004-7638.2021.06.008
基金项目: 国家两机重大专项基础研究(J2019-Ⅶ-002)
详细信息
    作者简介:

    冉兴(1968—),男,贵州松桃人,博士研究生,研究员,主要研究方向:熔模精密铸造,E-mail: 2560680637@qq.com,电话:0851-32208022

    通讯作者:

    李培杰,博士,教授,主要研究方向:轻合金材料成型,E-mail:lipj@mail.tsinghua.edu.cn

  • 中图分类号: TF823,TG156.94

Influence of solution treatment on microstructure and mechanical properties of Ti6Al4V ELI titanium alloy

  • 摘要: 采用扫描电镜(SEM)和金相显微镜(OM)研究了固溶热处理对Ti6Al4V ELI钛合金显微组织的演变规律,以及显微组织对力学性能的影响关系,结果表明:随着固溶温度的升高,Ti6Al4V ELI钛合金初生αp相含量降低,片层α相厚度和β晶粒尺寸均增加;钛合金强度和塑性均随着固溶温度的升高而降低,在952 ℃固溶后时效,抗拉强度可达915 MPa,延伸率16.8%,断裂韧性仅为84 MPa·m1/2;在997 ℃进行固溶后时效,钛合金抗拉强度降低至861 MPa,延伸率9.6%,断裂韧性达115 MPa·m1/2。在952 ℃进行固溶,Ti6Al4V ELI钛合金为韧性断裂,提高固溶温度后合金呈韧脆混合型断裂。
  • 图  1  Ti6Al4V ELI钛合金棒材显微组织

    Figure  1.  Microstructure of the Ti6Al4 V ELI titanium alloy

    图  2  不同固溶温度条件下Ti6Al4V ELI钛合金显微组织

    Figure  2.  Microstructure of Ti6Al4V ELI titanium alloy at various solution treatment temperatures

    (a) 952 ℃;(b) 967 ℃;(c) 997 ℃;(d) 1 012 ℃

    图  3  不同热处理条件下Ti6Al4 V ELI钛合金室温拉伸断口形貌

    Figure  3.  Tensile fracture morphology of Ti6Al4V ELI titanium alloy at various solution treatments

    (a) 952 ℃;(b) 967 ℃;(c) 997 ℃;(d) 1 012 ℃

    表  1  Ti6Al4V ELI钛合金棒材化学成分

    Table  1.   Chemical compositions of Ti6Al4V ELI alloy %

    合金TiAlVFeCHON
    棒材Bal.6.214.250.060.0090.0010.090.006
    Ti6Al4V ELIBal.5.6~6.33.6~4.4 ≤0.25 ≤0.05 ≤0.125 ≤0.13 ≤0.03
    下载: 导出CSV

    表  2  不同固溶温度条件下Ti6Al4V ELI钛合金显微组织参数

    Table  2.   Microstructure parameters of Ti6Al4V ELI titanium alloy at various solution treatment temperatures

    编号初生αp
    含量/%
    片层
    α相平均尺寸/μm
    β相晶粒平均
    尺寸/μm
    302.8
    104.875
    5.5138
    5.7215
    下载: 导出CSV

    表  3  Ti6Al4 V ELI钛合金在不同热处理制度下的室温力学性能

    Table  3.   Tensile and fracture toughness of Ti6Al4V ELI titanium alloy at various solution treatments

    编号Rm/MPaRp0.2/MPaA/%Z/%KIC/(MPa·m1/2)
    91584616.84584
    87580111.22691
    8617929.619115
    8437758.216103
    下载: 导出CSV
  • [1] Yuan Hong, Yu Huai, Wang Jinxue, et al. Damage tolerance properties of electron beam welded joints of TC4-DT titanium alloy[J]. Materials Engineering, 2007,(8):18−20. (袁鸿, 余槐, 王金雪, 等. TC4-DT钛合金电子束焊接接头的损伤容限性能[J]. 材料工程, 2007,(8):18−20.
    [2] Akahori T, Niinomi M, Fukunaga K I. An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI[J]. Metallurgical & Materials Transactions A, 2000,31(8):1937−1948.
    [3] Semenova I P, Saitova L R, Raab G I, et al. Microstructural features and mechanical properties of the Ti-6Al-4V ELI alloy processed by severe plastic deformation[J]. Materials Science Forum, 2006,(1):128−131.
    [4] Xu Liang, Zhao Qing, Hui Li, et al. Influence of corrosion evironments on corrosion fatigue property of per-corroded TC-DT titanium alloy[J]. Hot Working Technology, 2019,(20):125−129. (许良, 赵晴, 回丽, 等. 腐蚀环境对预腐蚀TC4-DT钛合金疲劳性能的影响[J]. 热加工工艺, 2019,(20):125−129.
    [5] Chen Lianguo, Wang Wensheng, Zhu Zhishou, et al. Development and application of large size damage tolerant titanium alloy TC4-DT[J]. Journal of Aeronautics (Special Issue of Fighter), 2020,41(6):36−41. (陈联国, 王文盛, 朱知寿, 等. 大规格损伤容限钛合金TC4-DT的研制及应用[J]. 航空学报(战斗机专刊), 2020,41(6):36−41.
    [6] Yu Lanlan, Mao Xiaonan, Li Hui, et al. Research on high cycle fatigue behavior of TC4-DT titanium alloy[J]. Titanium Industry Progress, 2012,29(6):11−14. (于兰兰, 毛小南, 李辉, 等. TC4-DT钛合金高周疲劳行为研究[J]. 钛工业进展, 2012,29(6):11−14.
    [7] Venkatesh B D, Chen D L, Bhole S D. Effect of heat treatment on mechanical properties of Ti-6 Al-4 V ELI alloy[J]. Materials Science and Engineering, 2009,(1):121−125.
    [8] Peng X, Guo H, Shi Z, et al. Study on the hot deformation behavior of TC4-DT alloy with equiaxed α+β starting structure based on processing map–Science direct[J]. Materials Science and Engineering:A, 2014,605:80−88. doi: 10.1016/j.msea.2014.03.047
    [9] Lu Y, Xu X, Zhang B, et al. Microstructural analysis and mechanical behavior of TC4 titanium alloy and 304 stainless steel by friction stir lap welding[J]. Welding in the World, 2021:1−16.
    [10] Liu Jinhao, Liu Jiansheng, Xiong Yunsen, et al. Study on thermal deformation behavior and machining drawing of TC4-DT titanium alloy[J]. Rare Metal Materials and Engineering, 2013,(8):1674−1678. (刘金豪, 刘建生, 熊运森, 等. TC4-DT钛合金的热变形行为研究及加工图[J]. 稀有金属材料与工程, 2013,(8):1674−1678. doi: 10.3969/j.issn.1002-185X.2013.08.027
    [11] Lei Wenguang, Mao Xiaonan, Lu Yafeng. Effect of heat treatment process on microstructure and properties of TC4-DT titanium alloy thick plate[J]. Metal Heat Treatment, 2012,37(9):102−105. (雷文光, 毛小南, 卢亚锋. 热处理工艺对TC4-DT钛合金厚板组织和性能的影响[J]. 金属热处理, 2012,37(9):102−105.
    [12] Zhu Liwei, Wang Xinnan, Zhu Zhishou. Microstructure and mechanical properties of TC4-DT titanium alloy under different heat treatment processes[J]. Titanium Industry Progress, 2012,(1):14−17. (祝力伟, 王新南, 朱知寿. 不同热处理工艺下TC4-DT钛合金的显微组织及力学性能[J]. 钛工业进展, 2012,(1):14−17.
    [13] Li Jing, Zhu Zhishou, Wang Xinnan, et al. β effect of heat treatment process on crack propagation behavior of TC4-DT titanium alloy[J]. Rare Metals, 2017,41(7):745−750. (李静, 朱知寿, 王新南, 等. 准β热处理工艺对TC4-DT钛合金裂纹扩展行为的影响[J]. 稀有金属, 2017,41(7):745−750.
    [14] Li Hui, Qu Henglei, Zhao Yongqing, et al. Effect of heat treatment on microstructure and properties of Ti-6Al-4V ELI alloy thick plate[J]. Rare Metals, 2005,(6):841−844. (李辉, 曲恒磊, 赵永庆, 等. 热处理对Ti-6Al-4V ELI合金厚板组织与性能的影响[J]. 稀有金属, 2005,(6):841−844. doi: 10.3969/j.issn.0258-7076.2005.06.009
    [15] Wang Xinnan, Zhu Zhishou, Shang Guoqiang, et al. Effect of heat treatment process on mechanical properties of Ti-6Al-4V ELI alloy thick section forgings[J]. Titanium Industry Progress, 2019,(2):29−33. (王新南, 朱知寿, 商国强, 等. 热处理工艺对Ti-6Al-4V ELI合金厚截面锻件力学性能的影响[J]. 钛工业进展, 2019,(2):29−33.
    [16] Wang Zhe, Wang Xinnan, Zhu Liwei, et al. Grain growth behavior in β phase of TB17 titanium alloy[J]. Titanium Industry Progress, 2016,33(6):11−15. (王哲, 王新南, 祝力伟, 等. TB17钛合金β相区晶粒长大行为[J]. 钛工业进展, 2016,33(6):11−15.
    [17] Wang B, Cheng L, Cui W, et al. Effect of forging process on high cycle and very high cycle fatigue properties of TC4 titanium alloy under three-point bending[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021,(1):36−40.
    [18] Tian Chenchao, Gao Yang, Zhang Juan, et al. Comparative analysis of fatigue crack growth rate of TC4-DT and TC21 titanium alloys[J]. Welded Pipe, 2019,42(11):31−34. (田晨超, 高阳, 张娟, 等. TC4-DT及TC21钛合金疲劳裂纹扩展速率的对比分析[J]. 焊管, 2019,42(11):31−34.
    [19] Cui W, Chen X, Cheng L, et al. Fatigue property and failure mechanism of TC4 titanium alloy in the HCF and VHCF region considering different forging processes[J]. Materials Research Express, 2021,(3):48−52.
    [20] Guo P, Zhao Y, Hong Q, et al. Microscopic mechanism of fatigue crack propagation in TC4-DT titanium alloy[J]. Materials Reports, 2019,(5):28−32.
    [21] Wang B H, Cheng L, Bao X C. Effect of heat treatment on very high cycle fatigue properties of TC4[J]. Key Engineering Materials, 2021,881:3−11. doi: 10.4028/www.scientific.net/KEM.881.3
    [22] Naydenkin E V, Soldatenkov A P, Mishin I P, et al. Very high cycle fatigue failure of near β titanium alloy[J]. Physical Mesomechanics, 2021,24(3):326−334. doi: 10.1134/S1029959921030115
    [23] Shi Xiaoyun, Gao Yushe, Wang Wensheng. Effect of heat treatment on microstructure and mechanical properties of TC4-DT titanium alloy bar[J]. Hot Working Process, 2013,42(14):163−165. (史小云, 高玉社, 王文盛. 热处理对TC4-DT钛合金棒材组织和力学性能的影响[J]. 热加工工艺, 2013,42(14):163−165.
    [24] Liu G, Huang C, Sun S, et al. Effect of microstructure on high-speed cutting modified anti-fatigue performance of Incoloy A286 and titanium alloy TC17[J]. The International Journal of Advanced Manufacturing Technology, 2021,113(3):855−866.
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  441
  • HTML全文浏览量:  172
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-16
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回