留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热变形参数对钛合金两相区流变行为的影响

付文 周晓锋 利成宁 程方杰 王东坡

付文, 周晓锋, 利成宁, 程方杰, 王东坡. 热变形参数对钛合金两相区流变行为的影响[J]. 钢铁钒钛, 2021, 42(6): 78-83. doi: 10.7513/j.issn.1004-7638.2021.06.010
引用本文: 付文, 周晓锋, 利成宁, 程方杰, 王东坡. 热变形参数对钛合金两相区流变行为的影响[J]. 钢铁钒钛, 2021, 42(6): 78-83. doi: 10.7513/j.issn.1004-7638.2021.06.010
Fu Wen, Zhou Xiaofeng, Li Chengning, Cheng Fangjie, Wang Dongpo. Effect of hot deformation parameters on the rheological behavior of two-phase region of titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 78-83. doi: 10.7513/j.issn.1004-7638.2021.06.010
Citation: Fu Wen, Zhou Xiaofeng, Li Chengning, Cheng Fangjie, Wang Dongpo. Effect of hot deformation parameters on the rheological behavior of two-phase region of titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 78-83. doi: 10.7513/j.issn.1004-7638.2021.06.010

热变形参数对钛合金两相区流变行为的影响

doi: 10.7513/j.issn.1004-7638.2021.06.010
基金项目: 天津市科技计划项目(编号:18ZXJMTG00140)
详细信息
    作者简介:

    付文(1994—),男,山东威海人,博士研究生,主要从事钛合金及高强钢热轧成形研究,E-mail:fuwen_927@tju.edu.cn

    通讯作者:

    程方杰(1971—),男,山东青州人,博士,教授,主要从事钛合金热加工及焊接工艺研究,E-mail:chfj@tju.edu.cn

  • 中图分类号: TF823

Effect of hot deformation parameters on the rheological behavior of two-phase region of titanium alloy

  • 摘要: 以热轧态Ti80合金作为基材,在Gleeble-3500热模拟测试机上进行高温压缩测试,变形温度为800~1000 ℃,应变速率为0.01~10 s−1,总变形比例为75%。结果表明:Ti80钛合金在800~950 ℃时处于α+β两相区,其流变行为受变形温度和应变速率的显著影响。Ti80钛合金的加工硬化主要来自于初始α相中位错密度的提高,变形温度的提高会导致α相的减少,流变峰值应力不断降低,过高的应变速率会导致α相内位错运动受阻。Ti80钛合金中的初始α相更容易发生动态回复和动态再结晶,随着变形温度的提高,初始α相不断减少,动态软化程度逐渐减小直至接近0。为保证钛管热轧的稳定性,应适当提高变形温度,保证Ti80钛合金热变形组织具有较高的β相体积分数,同时避免应变速率过高造成轧制载荷过大。
  • 图  1  热轧态Ti80钛合金显微组织(室温)

    Figure  1.  Microstructure of hot-rolled Ti80 titanium alloy

    图  2  800~1 000 ℃时Ti80钛合金平衡相图

    Figure  2.  Equilibrium phase diagram of Ti80 titanium alloy at 800~1 000 ℃

    图  3  不同变形温度和应变速率下的Ti80钛合金真应力—应变曲线

    Figure  3.  True stress-strain curves of Ti80 titanium alloy under different deformation temperatures and strain rates

    图  4  不同变形温度和应变速率下的Ti80钛合金峰值应力分布

    Figure  4.  Peak stress of Ti80 titanium alloy under different deformation temperatures and strain rates

    图  5  不同变形温度和应变速率下的Ti80钛合金峰值应变分布

    Figure  5.  Peak strain of Ti80 titanium alloy at different deformation temperatures and strain rates

    图  6  不同变形温度和应变速率下的Ti80钛合金动态软化程度

    Figure  6.  Dynamic softening degree of Ti80 titanium alloy under different deformation temperatures and strain rates

    表  1  Ti80钛合金化学成分

    Table  1.   Chemical composition of Ti80 titanium alloy %

    AlMoSnVTi
    5.5~6.51.5~2.50.5~1.03.0~3.5余量
    下载: 导出CSV
  • [1] Zhou Xiaofeng, Sun Yu, Zhang Chuanyou, et al. R & D of TP-Ti-110 TP-G2(Ti) titanium alloy oil tubing with premium connection[J]. Steel Pipe, 2019,48(1):20−23. (周晓锋, 孙宇, 张传友, 等. TP-Ti-110钢级TP-G2(Ti)特殊螺纹钛合金油管的研发[J]. 钢管, 2019,48(1):20−23. doi: 10.3969/j.issn.1001-2311.2019.01.003
    [2] Zha Yongjin, Hu Shijie, Zhuo Lubin, et al. Study on application prospects of titanium-alloy petroleum tubulars[J]. Drilling and Production Technology, 2017,40(4):1−3. (查永进, 胡世杰, 卓鲁斌, 等. 钛合金石油管材应用前景研究[J]. 钻采技术, 2017,40(4):1−3.
    [3] Schutz R W, Watkins H B. Recent developments in titanium alloy application in the energy industry[J]. Materials Science and Engineering A, 1998,243(12):305−315.
    [4] Hu Xinhe. Titanium alloy drill pipe—the best choice for short-radius horizontal drilling platforms[J]. China Petroleum Machinery, 2000,28(6):61. (胡辛禾. 钛合金钻杆—短半径水平钻井平台最佳选择[J]. 石油机械, 2000,28(6):61. doi: 10.3969/j.issn.1001-4578.2000.06.024
    [5] Shi Xuezhi, Zhou Xiaohu, Qiao Zhiguo. Optimization of well completion string for ultra-deep gas reservoir with high sulfur content[J]. China Petroleum Machinery, 2016,44(8):11−14. (史雪枝, 周小虎, 乔智国. 超高深含硫气藏完井管材优化与实践[J]. 石油机械, 2016,44(8):11−14.
    [6] Banerjee D, Williams J C. Perspectives on titanium science and technology[J]. Acta Materialia, 2013,61:844−879. doi: 10.1016/j.actamat.2012.10.043
    [7] Wang M, Zhou J X, Yin Y J, et al. Hot deformation behavior of the Ti6Al4V alloy prepared by powder hot isostatic pressing[J]. Journal of Alloys and Compounds, 2017,721:320−332. doi: 10.1016/j.jallcom.2017.06.003
    [8] Chen W, Cao S, Kou W J, et al. Origin of the ductile-to-brittle transition of metastable β-titanium alloys: Self-hardening of ω-precipitates[J]. Acta Materialia, 2019,170(11):187−204.
    [9] Shang Guoqiang, Zhu Zhishou, Kou Hongchao, et al. Influence of hot rolling deformation on microstructure and properties of Ti-10V-2Fe-3Al alloy[J]. Transactions of Materials and Heat Treatment, 2013,34(3):108−113. (商国强, 朱知寿, 寇宏超, 等. 热轧变形对Ti-10V-2Fe-3Al合金组织和性能的影响[J]. 材料热处理学报, 2013,34(3):108−113.
    [10] Tang B, Li J S, Zhang F S, et al. Modeling the high temperature deformation constitutive relationship of TC4-DT alloy based on fuzzy-neural network[J]. Rare Metal Materials and Engineering, 2013,42(7):1347−1351. doi: 10.1016/S1875-5372(13)60083-1
    [11] Wu Lin, Wang Kelu, Lu Shiqiang. Study on constitutive relationship of TB6 alloy based on stepwise regression method[J]. Material and Heat Treatment, 2010,39(8):29−31. (吴琳, 王克鲁, 鲁世强. 基于逐步回归法的TB6钛合金本构关系研究[J]. 热加工工艺, 2010,39(8):29−31. doi: 10.3969/j.issn.1001-3814.2010.08.010
    [12] Yang Tao, Song Dandan. Thermal compression deformation behavior of as-cast Ti-5.5Al alloy for vehicle[J]. Ordnance Material Science and Engineering, 2021,44(2):103−106. (杨涛, 宋丹丹. 车用铸态Ti-5.5Al合金热压缩变形行为研究[J]. 兵器材料科学与工程, 2021,44(2):103−106.
    [13] Dong Hongbo, Yu Xinping, Zhang Wei. Dynamic softening and strain hardening behavior of Q550D steel based on the dislocation density theory[J]. Journal of Plasticity Engineering, 2015,22(3):98−102. (董洪波, 余新平, 章威. 基于位错密度理论的Q550D钢动态软化及加工硬化行为[J]. 塑性工程学报, 2015,22(3):98−102.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  16
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回