留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原料粉末对NiTi的选区激光熔化成形件性能的影响

张亚伟 施麒 谭冲 刘辛 李贵发 郑海忠

张亚伟, 施麒, 谭冲, 刘辛, 李贵发, 郑海忠. 原料粉末对NiTi的选区激光熔化成形件性能的影响[J]. 钢铁钒钛, 2021, 42(6): 90-96. doi: 10.7513/j.issn.1004-7638.2021.06.012
引用本文: 张亚伟, 施麒, 谭冲, 刘辛, 李贵发, 郑海忠. 原料粉末对NiTi的选区激光熔化成形件性能的影响[J]. 钢铁钒钛, 2021, 42(6): 90-96. doi: 10.7513/j.issn.1004-7638.2021.06.012
Zhang Yawei, Shi Qi, Tan Chong, Liu Xin, Li Guifa, Zheng Haizhong. Effects of raw powder on NiTi parts fabricated by selective laser melting[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 90-96. doi: 10.7513/j.issn.1004-7638.2021.06.012
Citation: Zhang Yawei, Shi Qi, Tan Chong, Liu Xin, Li Guifa, Zheng Haizhong. Effects of raw powder on NiTi parts fabricated by selective laser melting[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 90-96. doi: 10.7513/j.issn.1004-7638.2021.06.012

原料粉末对NiTi的选区激光熔化成形件性能的影响

doi: 10.7513/j.issn.1004-7638.2021.06.012
基金项目: 广东省科学院博士(后)计划引进专项(编号: 2020 GDASYL-20200103134,选区激光熔化制备适用于骨骼植入的多孔Ni50.8 Ti49.2材料 )。
详细信息
    作者简介:

    张亚伟(1993—),男,河南商丘人,硕士研究生,主要从事NiTi合金的选区激光熔化技术研究,E-mail:643760696@qq.com

  • 中图分类号: TF124,TH164

Effects of raw powder on NiTi parts fabricated by selective laser melting

  • 摘要: 分别以Ni+Ti元素混合粉末和NiTi预合金粉末为原料,采用选区激光熔化工艺打印成形。重点研究了在相同打印工艺参数下原料粉末对成形件致密度、物相组成、显微组织、显微硬度的影响,从而反馈说明所用打印粉末对成形件性能的影响。结果表明:在相同打印工艺参数下,整体上NiTi预合金粉末成形件的致密度较高,而Ni+Ti 混合粉末成形件的显微硬度较高。对于同一种粉末,随着能量密度的增大,成形件的致密度先增大后减小,而显微硬度先减小后增大。NiTi预合金粉末成形件有致密的微观结构且相分布均匀,但存在少量孔隙。Ni+Ti 混合粉末成形件的微观结构有和构建方向垂直的贯穿式裂纹以及不均匀的基体相,但几乎没有孔隙。
  • 图  1  (a) NiTi预合金粉末的形貌;(b) Ni+Ti混合粉末的形貌

    Figure  1.  (a) Morphology of NiTi pre-alloyed powder; (b) Morphology of Ni + Ti mixed powder

    图  2  致密度随能量密度的变化

    Figure  2.  Relative density varies with the energy density

    图  3  SLM成形件的XRD图谱

    (a) NiTi预合金粉末成形件;(b) Ni+Ti混合粉末成形件

    Figure  3.  XRD patterns of SLM formed parts

    图  4  不同能量密度下NiTi预合金粉末成形件的微观结构

    Figure  4.  Microstructure of NiTi alloy powder formed parts under different energy densities

    a (a'): 39.68 J/mm3; b (b'): 46.29 J/mm3; c (c'): 55.55 J/mm3; d (d'): 83.66 J/mm3

    图  5  NiTi预合金粉末成形件微观结构的EDS

    Figure  5.  EDS of microstructure of NiTi alloy powder formed parts

    图  6  不同能量密度下Ni+Ti 混合粉末成形件的微观结构

    Figure  6.  Microstructure of Ni + Ti mixed powder formed parts under different energy densities

    a (a'): 39.68 J/mm3; b (b'): 46.29 J/mm3; c (c'): 55.55 J/mm3; d (d'): 83.66 J/mm3

    图  7  (a) Ni+Ti 混合粉末成形件裂纹区域的BSE形貌,(b) (c)在(a)中从“A”点到“B”点的EDS线扫描

    Figure  7.  (a) BSE image of crack area of Ni + Ti mixed powder formed parts, (b) (c) EDS line scan from point "A" to point "B" in (a)

    图  8  图7(a)中方框区域的放大

    Figure  8.  The magnification of the rectangular area in Fig. 7(a)

    图  9  显微硬度随能量密度的变化

    Figure  9.  Variation of microhardness with energy density

    表  1  原料粉末的杂质含量及粒度

    Table  1.   Impurity content and particle size of the raw material powders

    原料粉末w/%D10/µmD50/µmD90/µm
    CHO
    NiTi ~0.0015 ~0.0003 ~0.006 21.90 33.60 49.80
    Ni ~0.0034 ~0.0006 ~0.0250 10.6 23.5 43.3
    Ti ~0.0046 ~0.0014 ~0.0560 26.3 44.0 86.2
    下载: 导出CSV

    表  2  选区激光熔化工艺参数

    Table  2.   Experimental parameters of selective laser melting

    P/Wv/(mm·s−1)h/µmt/µmE/(J·mm−3)
    1503501203039.68
    2503001203046.29
    3502501203055.55
    4501661203083.66
    下载: 导出CSV

    表  3  Ni+Ti 混合粉末成形件微观结构的不同区域的Ni/Ti

    Table  3.   Ni/ Ti in different regions of microstructure of Ni + Ti mixed powder formed parts

    区域y/%
    TiNi合计
    点数据1 99.62 0.38 100.00
    点数据 2 73.93 26.07 100.00
    点数据 3 39.98 60.02 100.00
    点数据 4 39.46 60.54 100.00
    面数据 5 44.25 55.75 100.00
    面数据 6 42.49 57.51 100.00
    下载: 导出CSV
  • [1] Elahinia M H, Hashem M, Tabesh M, et al. Manufacturing and processing of NiTi implants: a review[J]. Progress in Materials Science, 2012,57(5):911−946. doi: 10.1016/j.pmatsci.2011.11.001
    [2] Zhao X. Additive manufacturing NiTi shape memory alloy and its application in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2016,507(12):34−41.
    [3] Andani M T, Moghaddam N S, Haberland C, et al. Metals for bone implants. Part 1. Powder metallurgy and implant rendering[J]. Acta Biomaterialia, 2014,10(10):4058−4070. doi: 10.1016/j.actbio.2014.06.025
    [4] Moghaddam N S, Skoracki R, Miller M, et al. Three dimensional printing of stiffness-tuned, nitinol skeletal fixation hardware with an example of mandibular segmental defect repair[J]. Procedia CIRP, 2016,49:45−50. doi: 10.1016/j.procir.2015.07.027
    [5] Hutmacher D W, Sittinger M, Risbud M V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems[J]. Trends in Biotechnology, 2004,22(7):354−362. doi: 10.1016/j.tibtech.2004.05.005
    [6] Thijs L, Montero Sistiaga M, Wauthle R, et al. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum[J]. Acta Materialia, 2013,61(12):4657−4668. doi: 10.1016/j.actamat.2013.04.036
    [7] Ng C C, Savalani M M, Lau M L, et al. Microstructure and mechanical properties of selective laser melted magnesium[J]. Applied Surface Science, 2011,257(17):7447−7454. doi: 10.1016/j.apsusc.2011.03.004
    [8] Zhang B, Chen J, Coddet C. Microstructure and transformation behavior of in-situ shape memory alloys by selective laser melting Ti-Ni mixed powder[J]. Journal of Materials Science & Technology, 2013,29(9):863−867.
    [9] Wang C, Tan X P, Du Z, et al. Additive manufacturing of NiTi shape memory alloys using pre-mixed powders[J]. Journal of Materials Processing Technology, 2019:152−161.
    [10] Yang Y, Zhan J B, Li B, et al. Laser beam energy dependence of martensitic transformation in SLM fabricated NiTi shape memory alloy[J]. Materialia, 2019,6:55−75.
    [11] Yang Y, Huang Y, Wu W. One-step shaping of NiTi biomaterial by selective laser melting [C]// Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2007.
    [12] Li R, Liu J, Shi Y, et al. Balling behavior of stainless steel and nickel powder during selective laser melting process[J]. International Journal of Advanced Manufacturing Technology, 2012,59:1025−1035. doi: 10.1007/s00170-011-3566-1
    [13] Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing[J]. Smart Materials & Structures, 2014,23:55−67.
    [14] Li S, Hassanin H, Attallah M M, et al. The development of TiNi-based negative poisson's ratio structure using selective laser melting[J]. Acta Materialia, 2016,105:75−83. doi: 10.1016/j.actamat.2015.12.017
    [15] Zhang L, Chen X, Xia T. Development of NiTi porous alloys prepared by SHS process[J]. Powder Metallurgy Industry, 2007,17(3):48−51.
    [16] Gu D, Ma C. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites[J]. Applied Surface Science, 2018:862−870.
    [17] Buehler W J, Gilfrich J V, Wiley R C. Effect of low temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics, 1963,34(5):1475−1477. doi: 10.1063/1.1729603
    [18] Nishida M, Wayman C M, Honma T. Precipitation processes in near-equiatomic TiNi shape memory alloys[J]. Metallurgical Transactions A, 1986,17A:1505−1515.
    [19] Montero-Sistiaga M L, Miguel G M, Kurt B, et al. Microstructure evolution of 316 L produced by HP-SLM (high power selective laser melting)[J]. Additive Manufacturing, 2018,23:402−410. doi: 10.1016/j.addma.2018.08.028
    [20] Jiang X, Xia W, Lou D, et al. Effect of scanning speed on internal defects and mechanical properties of Ti-6Al-4V alloy processed by selective laser melting[J]. Matertials for Mechanical Engineering, 2020,44(11):41−45.
    [21] Zhang B, Fenineche N E, Zhu L, et al. Studies of magnetic properties of permalloy (Fe–30%Ni) prepared by SLM technology[J]. Journal of Magnetism and Magnetic Materials, 2012,324(4):495−500. doi: 10.1016/j.jmmm.2011.08.030
    [22] Elahinia M, Moghaddam N S, Andani M T, et al. Fabrication of NiTi through additive manufacturing: a review[J]. Progress in Materials Science, 2016,83(10):630−636.
    [23] Meier H, Haberland C. Experimental studies on selective laser melting of metallic parts[J]. Materialwissenschaft und Werkstofftechnik, 2008,39(9):665−70. doi: 10.1002/mawe.200800327
    [24] Gao F, Wang H M. Dry sliding wear property of a laser melting/deposited Ti2Ni/TiNi intermetallic alloy[J]. Intermetallics, 2008,16:202−208. doi: 10.1016/j.intermet.2007.09.008
    [25] Ma Y, Liu Y, Shi W, et al. Effect of scanning speed on forming defects and properties of selective laser melted 316 L stainless steel powder[J]. Laser & Optoelectronics Progress, 2019,56(10):55−64.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  14
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 录用日期:  2021-11-19
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回