留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光响应型钛基纳米薄膜的制备及防腐性能研究

李文靓 彭穗 辛亚男 唐敏

李文靓, 彭穗, 辛亚男, 唐敏. 光响应型钛基纳米薄膜的制备及防腐性能研究[J]. 钢铁钒钛, 2021, 42(6): 120-132. doi: 10.7513/j.issn.1004-7638.2021.06.017
引用本文: 李文靓, 彭穗, 辛亚男, 唐敏. 光响应型钛基纳米薄膜的制备及防腐性能研究[J]. 钢铁钒钛, 2021, 42(6): 120-132. doi: 10.7513/j.issn.1004-7638.2021.06.017
Li Wenjing, Peng Sui, Xin Yanan, Tang Min. Preparation and anti-corrosion properties of photoresponsive titanium based nano-films[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 120-132. doi: 10.7513/j.issn.1004-7638.2021.06.017
Citation: Li Wenjing, Peng Sui, Xin Yanan, Tang Min. Preparation and anti-corrosion properties of photoresponsive titanium based nano-films[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 120-132. doi: 10.7513/j.issn.1004-7638.2021.06.017

光响应型钛基纳米薄膜的制备及防腐性能研究

doi: 10.7513/j.issn.1004-7638.2021.06.017
详细信息
  • 中图分类号: TF823,TG174

Preparation and anti-corrosion properties of photoresponsive titanium based nano-films

  • 摘要: 基于企业生产研究背景与优势,提出利用廉价且易得的钛源(例如:TiOSO4)材料为原料,采用反应简单、操作便捷的sol-gel法在基材表面制备一层或多层纳米级钛基薄膜,研究镀膜后基材在紫外光光照和暗态条件下的耐腐蚀能力,意图通过镀膜大幅度提高基材的耐腐蚀能力。通过选择钛源、沉淀剂、水溶胶的钛浓度、络合剂比例和反应温度优化水溶胶制备工艺;同时研究不同浓度水溶胶的粘温特性及采用水溶胶浓缩为干凝胶的方法对水溶胶中颗粒粒径和形貌进行观测,溶胶粒径均小于50 nm。后期采用匀速提拉法在基板表面进行不同层数薄膜的制备,采用相应热处理得到纳米钛基薄膜,并研究纳米薄膜的形貌。最后将基片制作成电极浸渍在3.5%氯化钠溶液中测试其防腐性能,制备纳米薄膜表面颗粒粒径均小于50 nm,五层膜厚度在1 μm左右。防腐性能测试结果表明在基材表面制备防腐薄膜提高了基材腐蚀电位、降低其腐蚀电流,在暗态条件下,相较基板的防护效率最高可达99.73%;在紫外光照下,相较基板的防护效率最高可达99.14%。同时通过暗态和紫外光照下的基板的开路电位分析,在紫外光照射下相对于暗态下的开路电位出现不同程度负移的情况,展现出薄膜具有光响应性。
  • 图  1  温度对反应时间的影响

    Figure  1.  Effect of temperature on reaction time

    图  2  H+/Ti摩尔比的影响

    Figure  2.  Effect of H+/Ti mole ratio

    图  3  以硫酸氧钛为钛源的水溶胶粘温特性

    Figure  3.  Viscosity-temperature characteristics of the hydrosol using titanium oxysulfate as titanium source

    图  4  以硫酸氧钛为原料的水溶胶

    Figure  4.  Hydrosol using TiOSO4 as raw material

    (a) 0.05 mol/L;(b) 0.1 mol/L;(c) 0.15 mol/L;(d) 0.2 mol/L

    图  5  以硫酸氧钛为原料的干凝胶SEM形貌

    Figure  5.  SEM images of dry-gel using TiOSO4 as raw material

    (a) 0.05 mol/L;(b) 0.1 mol/L;(c) 0.15 mol/L;(d) 0.2 mol/L

    图  6  Ti浓度0.05 mol/L的以TiOSO4为原料的水溶胶制备薄膜的SEM形貌(1~5层)

    Figure  6.  SEM images of films prepared by TiOSO4 hydrosol with 0.05 mol/L Ti (layers 1~5)

    图  7  Ti浓度0.1 mol/L 的以TiOSO4为原料的水溶胶制备薄膜的SEM形貌(1~5层)

    Figure  7.  SEM images of films prepared by TiOSO4 hydrosol with 0.1 mol/L Ti (layers 1~5)

    图  8  Ti浓度0.15 mol/L 的以TiOSO4为原料的水溶胶制备薄膜的SEM形貌(1~5层)

    Figure  8.  SEM images of films prepared by TiOSO4 hydrosol with 0.15 mol/L Ti (layers 1~5)

    图  9  Ti浓度0.2 mol/L 的以TiOSO4为原料的水溶胶制备薄膜的SEM形貌(1~5层)

    Figure  9.  SEM images of films prepared by TiOSO4 hydrosol with 0.2 mol/L Ti (layers 1~5)

    图  10  不同Ti浓度时以TiOSO4为原料的水溶胶制备五层薄膜的EDS谱

    Figure  10.  EDS spectra of five-layer thin films prepared with TiOSO4 hydrosol at different Ti concentrations

    (a) 0.05 mol/L;(b) 0.1 mol/L;(c) 0.15 mol/L;(d) 0.2 mol/L

    图  11  不同Ti浓度时以TiOSO4为原料的水溶胶制备五层薄膜侧视图

    Figure  11.  Side view images of five-layer thin films prepared with TiOSO4 hydrosol at different Ti concentrations

    (a) 0.05 mol/L;(b) 0.1 mol/L;(c) 0.15 mol/L;(d) 0.2 mol/L

    图  12  防腐性能检测示意

    Figure  12.  Schematic diagram of corrosion resistance test

    图  13  不同钛浓度水溶胶制备薄膜覆盖的基板在暗态下测试的Tafel曲线

    钛浓度:(a) 0.05 mol/L;(b) 0.1 mol/L;(c) 0.15 mol/L;(d) 0.2 mol/L

    Figure  13.  Tafel curves of thin film-covered substrates prepared with TiOSO4 hydrosol at different Ti concentrations in dark state

    图  14  不同钛浓度水溶胶制备薄膜覆盖的基板在紫外光下测试的Tafel曲线

    钛浓度:(a) 0.05 mol/L;(b) 0.1 mol/L;(c) 0.15 mol/L;(d) 0.2 mol/L

    Figure  14.  Tafel curves of thin film-covered substrates prepared with TiOSO4 hydrosol at different Ti concentrations under UV light

    表  1  试验试剂

    Table  1.   Experimental reagents

    试剂名称分子式生产厂家纯度
    硫酸氧钛TiOSO4·H2O天津市光复精细化工研究所分析纯
    氨水NH4OH成都市科隆化学品有限公司分析纯
    硝酸HNO3重庆川东化工集团有限公司分析纯
    无水乙醇C2H5OH成都金山化学试剂有限公司分析纯
    下载: 导出CSV

    表  2  以硫酸氧钛为原料的薄膜覆盖的基片对应暗态和紫外光下开路电位

    Table  2.   Open circuit potentials of thin film-covered substrates prepared with TiOSO4 in dark state and under UV light

    样品编号暗态OCP/V紫外光照态OCP/V
    A-1−0.173−0.224
    A-2−0.165−0.187
    A-3−0.18−0.191
    A-4−0.129−0.163
    A-5−0.149−0.187
    B-1−0.168−0.175
    B-2−0.155−0.155
    B-3−0.14−0.166
    B-4−0.17−0.173
    B-5−0.195−0.197
    C-1−0.211−0.218
    C-2−0.197−0.212
    C-3−0.202−0.219
    C-4−0.194−0.209
    C-5−0.176−0.205
    D-1−0.26−0.273
    D-2−0.219−0.227
    D-3−0.163−0.197
    D-4−0.178−0.205
    D-5−0.216−0.235
    下载: 导出CSV
  • [1] Tao Qi, Li Fenfang, Xing Jianmin. Research progress of metal corrosion and its protective measures[J]. Hunan Nonferrous Metals, 2007,(2):48−51. (陶琦, 李芬芳, 邢健敏. 金属腐蚀及其防护措施的研究进展[J]. 湖南有色金属, 2007,(2):48−51.
    [2] 王成. 不锈钢表面电化学处理及耐腐蚀机理研究[D]. 厦门: 厦门大学, 2018.

    Wang Cheng. Study on electrochemical treatment and corrosion resistance mechanism of stainless steel surface[D]. Xiamen: Xiamen University, 2018.
    [3] 彭叔森, 赵文杰, 曾志翔, 等. 304不锈钢表面有机硅耐蚀薄膜的制备及其防腐性能[C]//第九届全国表面工程大会暨第四届全国青年表面工程论坛论文集. 宁波: 中国机械工程学会, 2012.

    Peng Shusen, Zhao Wenjie, Zeng Zhixiang, et al. Preparation and corrosion resistance of 304 Stainless steel surface silicone film[C]//Proceedings of the 9 th National Surface Engineering Conference and the 4 th National Youth Surface Engineering Forum. Ningbo: Chinese Society of Mechanical Engineering, 2012.
    [4] Liu Xiyan, Jiang Jianming, Chen Zhengtao, et al. Research progress in anti-corrosive protection for aluminum alloy[J]. Modern Paint & Coating, 2007,10(12):11−14. (刘希燕, 蒋健明, 陈正涛, 等. 铝合金防腐保护研究进展[J]. 现代涂料与涂装, 2007,10(12):11−14. doi: 10.3969/j.issn.1007-9548.2007.12.004
    [5] Zhu Y, Zhang L, Gao C, et al. The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor[J]. Journal of Materials Science, 2000,35(16):4049−4054. doi: 10.1023/A:1004882120249
    [6] 吴震弘. TiO2薄膜在不锈钢上防腐机理的研究及应用[D]. 杭州: 浙江理工大学, 2014.

    Wu Zhenhong. Study and application of TiO2 film anticorrosion mechanism on stainless steel[D]. Hangzhou: Zhejiang Sci-tech University, 2014.
    [7] Koelsch M, Cassaignon, Guillemoles J F. Comparison of optical and electrochemical properties of anatase and brookite TiO2 synthesized by the sol–gel method[J]. Thin Solid Films, 2002,403:312−319.
    [8] Yu J, Zhao X, Zhao Q. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method[J]. Thin Solid Films, 2000,379(1-2):7−14. doi: 10.1016/S0040-6090(00)01542-X
    [9] Tian Shouwei, Wang Zuohui, Liu Yangsi, et al. Preparation of photocatalytic self-cleaning ceramics supported by nano-TiO2 thin films[J]. Iron Steel Vanadium Titanium, 2006,27(3):26−30. (田守卫, 王作辉, 刘阳思, 等. 负载纳米TiO2薄膜的光催化自清洁陶瓷的制备[J]. 钢铁钒钛, 2006,27(3):26−30. doi: 10.3969/j.issn.1004-7638.2006.03.006
    [10] Zhang Wenbin, Zhou Yan. Progress in photocatalysis of nano-TiO2[J]. Iron Steel Vanadium Titanium, 2005,26(4):26−33. (张文彬, 周燕. 纳米TiO2光催化研究进展[J]. 钢铁钒钛, 2005,26(4):26−33. doi: 10.3969/j.issn.1004-7638.2005.04.006
    [11] Wu Jianchun. Application of rutile nano-titanium dioxide in coatings[J]. Iron Steel Vanadium Titanium, 2021,42(1):7. (吴健春. 金红石纳米二氧化钛在涂料中的应用[J]. 钢铁钒钛, 2021,42(1):7.
    [12] Wu Jianchun, Lu Ruifang. Effect of rutile nano-TiO2 on UV resistance of paint[J]. Iron Steel Vanadium Titanium, 2015,36(3):4. (吴健春, 路瑞芳. 金红石纳米TiO2对油漆抗紫外性能的影响[J]. 钢铁钒钛, 2015,36(3):4.
    [13] Bautista-Ruiz J, Aperador W, Delgado A, et al. Synthesis and characterization of anticorrosive coatings of SiO2 -TiO2 - ZrO2 obtained from sol-gel suspensions[J]. International Journal of Electrochemical Science, 2014,9(8):4144−4157.
    [14] Kim S J, Ko J Y. Electrochemical properties of Al and Al alloys relevant to corrosion protection in seawater environments[J]. Korean Journal of Chemical Engineering, 2006,23(5):847−853. doi: 10.1007/BF02705939
    [15] Zheng Fuyang, Ding Hongbo, Ma Tingchun, et al. Study of lithium anticorrosive film on aluminum alloy[J]. Electroplating & Finishing, 2000,(4):4−6.
    [16] Abreu N M. Low and high temperature aqueous alteration of the matrices of CR chondrites: Nano-SEM, EPMA, and TEM study [C]//43 nd Annual Lunar and Planetary Science Conference, 2012.
    [17] Salge T, Terborg R, Ball A D, et al. Advanced SEM/EDS analysis using an annular silicon drift detector (SDD): Applications in nano, life, earth and planetary sciences below micrometer scale[C]//Proceedings of the 18 th International Microscopy Conference, 2014.
    [18] Ma Yufang. Analysis of electrochemical corrosion and electrochemical analysis problems[J]. Science and Technology Toget Rich Guide, 2014,(29):155. (马玉芳. 浅析电化学腐蚀和电化学分析问题[J]. 科技致富向导, 2014,(29):155.
    [19] Cao Jingyi, Zhang Feng. Electrochemical rapid evaluation method for corrosion resistance of coatings[J]. Modern Paint and Finishing, 2009,12(12):51−52. (曹京宜, 张锋. 涂层防腐蚀性能电化学快速评价方法[J]. 现代涂料与涂装, 2009,12(12):51−52. doi: 10.3969/j.issn.1007-9548.2009.12.016
    [20] Chen Y, Chen X, Liu T, et al. Effect of potential on electrochemical corrosion behavior of 316 L stainless steel in borate buffer solution[J]. Journal of Chinese Society for Corrosion & Protection, 2015,35(2):137−143.
    [21] Zhou Qionghua. Electrochemical study on corrosion resistance of coated metals[J]. Journal of Electric Power Science and Technology, 2001,16(1):16−80. (周琼花. 涂装金属防蚀性能的电化学研究[J]. 电力科学与技术学报, 2001,16(1):16−80.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  15
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-31
  • 录用日期:  2021-11-19
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回