留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理制度对汽车用TC6钛合金组织及性能的影响

李广德 王瑛 李伟伦

李广德, 王瑛, 李伟伦. 热处理制度对汽车用TC6钛合金组织及性能的影响[J]. 钢铁钒钛, 2021, 42(6): 147-152. doi: 10.7513/j.issn.1004-7638.2021.06.021
引用本文: 李广德, 王瑛, 李伟伦. 热处理制度对汽车用TC6钛合金组织及性能的影响[J]. 钢铁钒钛, 2021, 42(6): 147-152. doi: 10.7513/j.issn.1004-7638.2021.06.021
Li Guangde, Wang Ying, Li Weilun. Effect of heat treatment on microstructure and properties of TC6 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 147-152. doi: 10.7513/j.issn.1004-7638.2021.06.021
Citation: Li Guangde, Wang Ying, Li Weilun. Effect of heat treatment on microstructure and properties of TC6 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 147-152. doi: 10.7513/j.issn.1004-7638.2021.06.021

热处理制度对汽车用TC6钛合金组织及性能的影响

doi: 10.7513/j.issn.1004-7638.2021.06.021
基金项目: 交通部西部交通建设科技项目(200131879549)。
详细信息
    作者简介:

    李广德(1982—),男,青海西宁人,副教授,硕士,主要从事机械制造及汽车行业相关研究工作,E-mail:47756433@qq.com

  • 中图分类号: TF823,TG156

Effect of heat treatment on microstructure and properties of TC6 titanium alloy

  • 摘要: 采用四种不同热处理制度对汽车用TC6钛合金棒材进行了等温退火试验,并进行了试样显微组织、耐磨损性能和耐腐蚀性能测试与分析。结果表明,采用“870 ℃保温1.5 h,炉冷至600 ℃保温2 h,空冷”热处理制度(1#试样)时,合金的耐磨损和耐腐蚀性能最差;采用“900 ℃保温1.5 h,炉冷至600 ℃保温2 h,空冷”热处理制度(2#试样)时,合金的耐磨损和耐腐蚀性能最佳;采用“920 ℃保温1.5 h,炉冷至600 ℃保温2 h,空冷” (3#试样)和“900 ℃保温1.5 h,炉冷至620 ℃保温2 h,空冷” (4#试样)时,合金试样的腐蚀电位和耐腐蚀性能介于上述二者之间。与1#试样相比, 2#试样的磨损体积减小8×10−3 mm3、腐蚀电位正移53 mV。
  • 图  1  试样显微组织金相照片

    (a) 1#试样;(b) 2#试样;(c) 3#试样;(d) 4#试样

    Figure  1.  Metallography microstructure of specimens

    图  2  试样耐磨损性能测试结果

    Figure  2.  The wear resistance of samples

    图  3  试样磨损试验后的表面形貌

    (a) 1#试样;(b) 2#试样;(c) 3#试样;(d) 4#试样

    Figure  3.  Surface morphology of samples after wear test

    图  4  试样耐腐蚀性能测试结果

    Figure  4.  Corrosion resistance of samples

    图  5  试样腐蚀试验后的表面形貌

    (a) 1#试样;(b) 2#试样;(c) 3#试样;(d) 4#试样

    Figure  5.  Surface morphology of samples after corrosion test

    表  1  钛合金试样化学成分

    Table  1.   Chemical compositions of the TC6 sample %

    AlMoCrSiFeCNHTi
    检测值6.282.891.320.270.310.0860.0210.007Bal.
    标准要求值5.5~72~30.8~2.30.15~0.40.2~0.7≤0.1≤0.05≤0.015Bal.
    下载: 导出CSV
  • [1] Ma Quan, Xin Shewei, Song Kai, et al. Effect of heat treatment on microstructure and mechanical properties of Ti-1300 alloy by electron beam weldment[J]. Rare Metal Materials and Engineering, 2019,48(8):2723−2728. (马权, 辛社伟, 宋凯, 等. 热处理对Ti-1300高强钛合金电子束焊接组织和力学性能的影响[J]. 稀有金属材料与工程, 2019,48(8):2723−2728.
    [2] Cao Ze’an, Cheng Donghai, Hu De’an, et al. Effect of hydrogen heat treatment on superplastic deformation of laser welded joints of titanium alloy[J]. Transaction of Materials and Heat Treatment, 2018,39(12):129−134. (曹泽安, 程东海, 胡德安, 等. 氢热处理对钛合金激光焊接接头超塑性变形的影响[J]. 材料热处理学报, 2018,39(12):129−134.
    [3] Chen Zhiru, Ji Xia, Chu Ruikun, et al. Effect of heat treatment on microstructure and properties of TC4 titanium alloy by laser melting deposition[J]. Heat Treatment of Metals, 2018,43(11):144−149. (陈志茹, 计霞, 楚瑞坤, 等. 热处理工艺对激光熔化沉积TC4钛合金组织性能的影响[J]. 金属热处理, 2018,43(11):144−149.
    [4] Wang Chen, Xu Dong, Chen Li. Effect of heat treatment on microstructure and mechanical properties of TC18 titanium alloy[J]. Heat Treatment of Metals, 2018,43(9):186−190. (王琛, 徐栋, 陈力. 热处理对TC18钛合金组织和力学性能的影响[J]. 金属热处理, 2018,43(9):186−190.
    [5] Shang Jin, Cao Wei, Chen Yongchang. Effect of heat treatment on corrosion resistance of 3 D printed titanium alloy[J]. Corrosion & Protection, 2020,41(5):27−29,62. (尚进, 曹玮, 陈永畅. 热处理对3 D打印钛合金耐蚀性的影响[J]. 腐蚀与防护, 2020,41(5):27−29,62. doi: 10.11973/fsyfh-202005006
    [6] Li Xuefei, Huang Lijun, Huang Xu, et al. Research on heat treatment process of TB6 titanium alloy after isothermal forging[J]. Titanium Industry Progress, 2020,37(2):31−34. (李雪飞, 黄利军, 黄旭, 等. TB6钛合金等温锻后热处理工艺研究[J]. 钛工业进展, 2020,37(2):31−34.
    [7] Lu Kaikai, Zhou Lipeng, Li Minna, et al. Effect of strengthening and toughening heat treatment on microstructure and mechanical properties of TA15 titanium alloy[J]. Transaction of Materials and Heat Treatment, 2020,41(1):44−49. (卢凯凯, 周立鹏, 李敏娜, 等. 强韧化热处理对TA15钛合金组织和性能的影响[J]. 材料热处理学报, 2020,41(1):44−49.
    [8] Gou Jian, Wang Zhijiang, Hu Shengsun, et al. Effects of CMT+P process and post heat treatment on microstructure and properties of TC4 component by additive manufacturing[J]. Transaction of the China Welding Institution, 2019,40(12):31−35,46. (勾健, 王志江, 胡绳荪, 等. CMT+P过程及后热处理对TC4钛合金增材构件组织和性能影响[J]. 焊接学报, 2019,40(12):31−35,46.
    [9] Yuan Jingjun, Ji Zhongshuo, Zhang Maicang, et al. Correlation between structure and orientation of TC17 titanium alloy during thermal deformation and heat treatment[J]. Chinese Journal of Engineering, 2019,41(6):772−780. (原菁骏, 姬忠硕, 张麦仓. 热变形及热处理过程中TC17钛合金组织与取向的关联性[J]. 工程科学学报, 2019,41(6):772−780.
    [10] Li Lifeng, Li Ganggang, Ma Tianju, et al. Effect of post-weld heat treatment on residual stress distribution of electron beam welded joints of titanium alloy[J]. Hot Working Technology, 2019,48(17):154−157. (李立峰, 黎刚刚, 马天驹, 等. 焊后热处理对钛合金电子束焊接接头残余应力分布的影响[J]. 热加工工艺, 2019,48(17):154−157.
    [11] Li Guoliang, Yao Zekun, Sun Pengpeng, et al. Effect of heat treatment on TC6 alloy microstructure and tensile property[J]. Forging & Stamping Technology, 2011,36(6):125−128. (李国亮, 姚泽坤, 孙朋朋, 等. 热处理对TC6钛合金组织及力学性能的影响[J]. 锻压技术, 2011,36(6):125−128. doi: 10.3969/j.issn.1000-3940.2011.06.032
    [12] 熊爱明, 黄维超, 陈胜晖, 等. 热处理制度对TC6钛合金显微组织的影响[J]. 中国有色金属学报, 2002, 12(z1): 206-209.

    Xiong Aiming, Huang Weichao, Chen Shenghui, et al. Effects of heat treatment on microstructure of TC6 titanium alloy[J]. The Chinese Journal of Nonferrous Metals. 2002, 12(z1): 206-209.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  15
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-24
  • 录用日期:  2021-11-19
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回