中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4钛合金MIG焊接头热处理后组织性能研究

何逸凡 陈东高 张龙 王大锋 邵志文 马良超

何逸凡, 陈东高, 张龙, 王大锋, 邵志文, 马良超. TC4钛合金MIG焊接头热处理后组织性能研究[J]. 钢铁钒钛, 2021, 42(6): 164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024
引用本文: 何逸凡, 陈东高, 张龙, 王大锋, 邵志文, 马良超. TC4钛合金MIG焊接头热处理后组织性能研究[J]. 钢铁钒钛, 2021, 42(6): 164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024
He Yifan, Chen Donggao, Zhang Long, Wang Dafeng, Shao Zhiwen, Ma Liangchao. Research on microstructure and properties of TC4 titanium alloy MIG welded joints after heat treatment[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024
Citation: He Yifan, Chen Donggao, Zhang Long, Wang Dafeng, Shao Zhiwen, Ma Liangchao. Research on microstructure and properties of TC4 titanium alloy MIG welded joints after heat treatment[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 164-170. doi: 10.7513/j.issn.1004-7638.2021.06.024

TC4钛合金MIG焊接头热处理后组织性能研究

doi: 10.7513/j.issn.1004-7638.2021.06.024
详细信息
    作者简介:

    何逸凡(1995—),男,内蒙古包头人,硕士研究生,研究方向:钛合金及铝合金焊接制造技术,E-mail:582019706@qq.com

    通讯作者:

    陈东高,男,研究员,研究方向:轻质材料制造技术,E-mail:chendg2580@sina.com

  • 中图分类号: TF823,TG456

Research on microstructure and properties of TC4 titanium alloy MIG welded joints after heat treatment

  • 摘要: 对TC4钛合金MIG焊焊接接头进行焊后热处理,采用盲孔法、拉伸、冲击、金相、扫描等方法对接头进行试验与分析,研究不同热处理工艺对残余应力、组织和力学性能的影响。结果表明:焊接接头经焊后热处理,横向残余应力和纵向残余应力平均值最大降为74.2 MPa和70.1 MPa;未热处理接头母材区为α+β片层组织,焊缝区为α'针状马氏体组织,热影响区为α和α'混合组织。热处理后,随着热处理温度和时间的增加,焊缝组织中的针状α'马氏体粗化,晶粒尺寸增加;未热处理接头焊后拉伸断裂位置为母材处,接头强度高于母材。在650 ℃+2 h的热处理工艺下,接头延伸率较未热处理状态提高,断裂方式为韧性断裂,保温时间延长至3 h,晶粒粗大、延伸率降低。接头室温冲击功焊后状态能够达到母材的95%,经焊后热处理后接头得到软化,室温冲击功相比焊后状态有所下降。
  • 图  1  典型接头区域及X射线图像

    Figure  1.  Typical joint area and its X-ray image

    图  2  不同焊后热处理工艺下残余应力值

    Figure  2.  Residual stress values of samples under different post-weld heat treatment processes

    图  3  TC4钛合金MIG焊焊接接头显微组织

    (a)焊接接头;(b)母材区;(c)焊缝区;(d)热影响区

    Figure  3.  Microstructure of TC4 titanium alloy MIG welded joint

    图  4  不同焊后热处理工艺下接头焊缝区的微观组织

    Figure  4.  The microstructure of the joint weld zone under different post-weld heat treatment processes

    图  5  不同热处理工艺下各接头拉伸性能

    Figure  5.  Tensile properties of individual joint under different heat treatment processes

    图  6  MIG焊接头断口形貌

    (a)整体;(b)局部;(c)放大;(d)韧窝

    Figure  6.  Fracture appearance of MIG welded joint

    图  7  不同焊后热处理条件下的拉伸断口形貌

    Figure  7.  Tensile fracture morphology of samples under different post-weld heat treatment conditions

    图  8  不同焊后热处理工艺下接头的室温冲击功

    Figure  8.  Room temperature impact energy of joints under different post-weld heat treatment processes

    表  1  TC4钛合金MIG焊焊接工艺参数

    Table  1.   Welding process parameters of TC4 titanium alloy MIG welding

    焊接层次焊接电流/A焊接速度/
    (m·min−1
    弧长修正/%脉冲修正/%摆动/
    (Hz·mm)
    干伸长
    /mm
    打底层1500.43003×122
    填充层1500.253003×722
    下载: 导出CSV

    表  2  真空热处理工艺参数

    Table  2.   Process parameters of vacuum heat treatment

    工艺编号加热温度T/℃保温时间t/h冷却方式
    1#未热处理
    2#5503炉冷
    3#6502炉冷
    4#6503炉冷
    下载: 导出CSV
  • [1] Zhao Yongqing, Ge Peng, Xin Shewei. Progress in research and development of titanium alloy materials in the past five years[J]. Progress in Materials in China, 2020,(Z1):527−534,557-558. (赵永庆, 葛鹏, 辛社伟. 近五年钛合金材料研发进展[J]. 中国材料进展, 2020,(Z1):527−534,557-558.
    [2] Gao Fuyang, Liao Zhiqian, Li Wenya. Welding methods and research status of titanium and titanium alloys[J]. Aviation Manufacturing Technology, 2012,(Z2):86−90. (高福洋, 廖志谦, 李文亚. 钛及钛合金焊接方法与研究现状[J]. 航空制造技术, 2012,(Z2):86−90.
    [3] 杨东旭. TC4钛合金激光焊接接头溶质元素分布及不均匀性的研究[D]. 武汉: 华中科技大学, 2015.

    Yang Dongxu. Research on solute element distribution and inhomogeneity of TC4 titanium alloy laser welding joint[D]. Wuhan: Huazhong University of Science and Technology, 2015.
    [4] Jianxun Z, Shuili G, Xiaoyan L, et al. Frontier and research trends on welding technologies for light metals[J]. Welding & Joining, 2008,(12):5−10,65.
    [5] Li Yi, Zhao Yongqing, Zeng Weidong. Application and development trend of aviation titanium alloy[J]. Materials Review, 2020,34(S1):280−282. (李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020,34(S1):280−282.
    [6] Lu Xin. Analysis of microstructure and defects of TIG welded joints of TC4 titanium alloy[J]. Iron Steel Vanadium Titanium, 2018,39(4):74−79,92. (陆鑫. TC4钛合金TIG焊接头组织及缺陷分析[J]. 钢铁钒钛, 2018,39(4):74−79,92. doi: 10.7513/j.issn.1004-7638.2018.04.013
    [7] Mou Gang, Hua Xueming, Xu Xiaobo, et al. Comparative study on TIG and MIG welding process and performance of 8 mm thick TC4 titanium alloy[J]. Electric Welding Machine, 2020,50(4):70−74,138−139. (牟刚, 华学明, 徐小波, 等. 8 mm 厚TC4钛合金TIG、MIG焊接工艺及性能对比研究[J]. 电焊机, 2020,50(4):70−74,138−139.
    [8] Zhang Long, Chen Donggao, Wang Dafeng, et al. Research on TC4 titanium alloy laser-MIG hybrid welding[J]. Ordnance Material Science and Engineering, 2019,42(2):73−77. (张龙, 陈东高, 王大锋, 等. TC4钛合金激光-MIG复合焊接研究[J]. 兵器材料科学与工程, 2019,42(2):73−77.
    [9] Semiatin S L, Knisley S L, Fagin P N, et al. Microstructure evolution during alpha-beta heat treatment of Ti-6 Al-4 V[J]. Metallurgical and Materials Transactions A, 2003,34A:2377.
    [10] Li Ke, Qi Zhilong, Wu Zhisheng, et al. Observation and analysis of MIG welding droplet transfer and arc shape[J]. Welding, 2016,(1):19−22,69. (李科, 齐志龙, 吴志生, 等. MIG焊熔滴过渡与电弧形态的观察与分析[J]. 焊接, 2016,(1):19−22,69. doi: 10.3969/j.issn.1001-1382.2016.01.004
    [11] Lei Z L, Chen Y B, Li L Q, et al. Characteristics of droplet transfer in CO2 laser-MIG hybrid welding with short-circuiting mode[J]. Chinese Journal Mechanical Engineering, 2006,19(2):172−175. doi: 10.3901/CJME.2006.02.172
    [12] Chen Rong. The effect of annealing temperature on the structure and properties of Ti-0.3Mo-0.8Ni titanium alloy sheet[J]. Iron Steel Vanadium Titanium, 2021,42(4):62−67. (陈容. 退火温度对Ti-0.3Mo-0.8Ni钛合金板材组织和性能影响[J]. 钢铁钒钛, 2021,42(4):62−67.
    [13] 钟亮, 付玉, 徐永东, 等. 钛基复合材料耐磨性研究进展[J/OL]. 钢铁钒钛: 1−14. [2021-11-16]. http://kns.cnki.net/kcms/detail/51.1245.TF.20211102.1029.002.html.

    Zhong Liang, Fu Yu, Xu Yongdong, et al. Research progress on wear resistance of titanium matrix composites[J/OL]. Iron Steel Vanadium Titanium: 1−14. [2021-11-16]. http://kns.cnki. net/kcms/detail/51.1245.TF.20211102.1029.002.html.
    [14] Zhang Long, Chen Donggao, Zhang Yingying, et al. Research on low-cost TC4 titanium alloy monofilament MIG welding technology and performance[J]. Ordnance Material Science and Engineering, 2021,44(1):93−97. (张龙, 陈东高, 张迎迎, 等. 低成本TC4钛合金单丝MIG焊工艺与性能研究[J]. 兵器材料科学与工程, 2021,44(1):93−97.
    [15] Huang Dinghui, He Lei, Zhao Shunfeng, et al. The effect of vacuum stress relief annealing temperature on the structure and properties of TA15 titanium alloy forgings[J]. Heat Treatment, 2019,34(6):24−27. (黄定辉, 贺磊, 赵顺峰, 等. 真空去应力退火温度对TA15钛合金锻件组织和性能的影响[J]. 热处理, 2019,34(6):24−27. doi: 10.3969/j.issn.1008-1690.2019.06.006
    [16] 回丽, 陆家琛, 周松, 等. 热处理对TC4钛合金激光双束焊接接头疲劳性能的影响[J/OL]. 吉林大学学报(工学版): 1-6[2021-11-16]. https://doi.org/10.13229/j.cnki.jdxbgxb20210589.

    Hui Li, Lu Jiachen, Zhou Song, et al. Effect of heat treatment on fatigue properties of TC4 titanium alloy laser double beam welding joint[J/OL]. Journal of Jilin University (Engineering Science Edition): 1-6[2021-11-16]. https://doi.org/10.13229/j.cnki.jdxbgxb20210589.
    [17] Zhang Yaowu, Zeng Weidong, Shi Chunling,et al. The effect of vacuum stress relief annealing on the residual stress and microstructure and properties of TC18 titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2011,21(11):2780−2785. (张尧武, 曾卫东, 史春玲, 等. 真空去应力退火对TC18钛合金残余应力及组织性能的影响[J]. 中国有色金属学报, 2011,21(11):2780−2785.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  77
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-14
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回