留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于应力三轴度的TA18钛合金损伤失效研究

张天文 王莹 李伟 江健 彭力 于辉

张天文, 王莹, 李伟, 江健, 彭力, 于辉. 基于应力三轴度的TA18钛合金损伤失效研究[J]. 钢铁钒钛, 2021, 42(6): 206-212. doi: 10.7513/j.issn.1004-7638.2021.06.030
引用本文: 张天文, 王莹, 李伟, 江健, 彭力, 于辉. 基于应力三轴度的TA18钛合金损伤失效研究[J]. 钢铁钒钛, 2021, 42(6): 206-212. doi: 10.7513/j.issn.1004-7638.2021.06.030
Zhang Tianwen, Wang Ying, Li Wei, Jiang Jian, Peng Li, Yu Hui. Research on damage failure of TA18 titanium alloy based on stress triaxiality[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 206-212. doi: 10.7513/j.issn.1004-7638.2021.06.030
Citation: Zhang Tianwen, Wang Ying, Li Wei, Jiang Jian, Peng Li, Yu Hui. Research on damage failure of TA18 titanium alloy based on stress triaxiality[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(6): 206-212. doi: 10.7513/j.issn.1004-7638.2021.06.030

基于应力三轴度的TA18钛合金损伤失效研究

doi: 10.7513/j.issn.1004-7638.2021.06.030
基金项目: 河北省自然科学基金(E202103237);中央引导地方科技发展资金项目(216 Z1002 G)。
详细信息
    作者简介:

    于辉(1974—),男,山东泰安人,教授,博士研究生导师,通讯作者,主要从事塑性材料成形研究,E-mail:yuhui@ysu.edu.cn

  • 中图分类号: TF823,TG115.5

Research on damage failure of TA18 titanium alloy based on stress triaxiality

  • 摘要: 对TA18钛合金材料设计不同缺口尺寸的拉伸试样,进行不同应力状态下的室温拉伸试验及断口形貌观察,通过试验和数值计算结合的方法研究TA18钛合金的韧性断裂特性,分析了应力状态对微观断裂机制的影响规律。利用Bridgman正向计算法修正颈缩失稳后的应力数据,建立了TA18钛合金的Johnson-Cook(J-C)本构模型,计算了拉伸试样的平均应力三轴度和断裂应变,回归确定了TA18钛合金损伤失效模型。结果表明:不同应力状态下的TA18钛合金断裂应变各不相同,断裂应变随着应力三轴度的增大而减小,断口韧窝尺寸与应力三轴度呈正相关关系,所建立的损伤失效模型能够描述该材料的断裂特性。
  • 图  1  试样尺寸示意(单位:mm)

    Figure  1.  Schematic diagram of specimen size

    图  2  拉伸断裂试验

    Figure  2.  Tensile fracture test

    图  3  位移-载荷曲线

    Figure  3.  Displacement-load curve

    图  4  试件宏观断口形貌

    试样:(a) SRB; (b) NR1; (c) NR2; (d) NR3

    Figure  4.  Macroscopic fracture morphology of specimens

    图  5  试件微观断口形貌

    试样: (a) SRB; (b) NR1; (c) NR2; (d) NR3

    Figure  5.  Microscopic fracture morphology of the specimen

    图  6  拉伸试样有限元模型

    Figure  6.  Finite element model of tensile specimen

    图  7  真应力-应变曲线修正

    Figure  7.  Correction of true stress-strain curve

    图  8  位移-载荷的模拟值与试验结果比较

    Figure  8.  Comparison of simulated and experimental results of displacement-load

    图  9  不同缺口试样应力三轴度分布规律

    Figure  9.  The triaxiality distribution law of cross-sectional stress for different notched specimens

    图  10  位移-载荷的模拟曲线与试验曲线比较

    Figure  10.  Comparison of simulated and experimental carve of displacement-load

    图  11  有限元模拟与试验结果对比

    Figure  11.  Comparison of finite element simulated and experimental results

    表  1  TA18钛合金的化学成分

    Table  1.   Chemical composition of TA18 titanium alloy %

    AlVFeCNOHTi
    2.752.50.250.080.050.120.015余量
    下载: 导出CSV

    表  2  不同试样的断裂参数

    Table  2.   Fracture parameters of different samples

    缺口半径/
    mm
    初始直径/
    mm
    断裂应变
    εf
    断裂直径/
    mm
    应力三轴度
    初始值最终值平均值
    14.200.4523.350.6701.3301.136
    24.150.5203.20.6281.1521.047
    34.100.6253.00.5961.0300.941
    下载: 导出CSV
  • [1] Yang Jianchao, Xi Jinhui, Yang Yashe, et al. Development and application of TA18 titanium alloy tube for aerospace use[J]. Titanium Industry Progress, 2014,31(4):6−10. (杨建朝, 席锦会, 杨亚社, 等. 航空航天用TA18钛合金管材的研发及应用[J]. 钛工业进展, 2014,31(4):6−10.
    [2] Jiang Zhiqiang, Yang He, Zhan Mei, et al. Development and prospects of titanium alloy pipes and their applications in the aviation field[J]. Journal of Plasticity Engineering, 2009,16(4):44−50,842. (江志强, 杨合, 詹梅, 等. 钛合金管材研制及其在航空领域应用的现状与前景[J]. 塑性工程学报, 2009,16(4):44−50,842. doi: 10.3969/j.issn.1007-2012.2009.04.010
    [3] Li Heng, Wei Dong, Yang Heng, et al. Research trends and existing problems of high-performance pipe two-roll Pilger cold rolling forming[J]. Aeronautical Manufacturing Technology, 2018,61(21):16−24. (李恒, 魏栋, 杨恒, 等. 高性能管材二辊皮尔格冷轧成形研究动态及存在问题[J]. 航空制造技术, 2018,61(21):16−24.
    [4] Yuan Hongjun, Li Yonglin, Zhao Hongzhang, et al. Cause analysis of cold rolling cracking of TA18 titanium alloy tube[J]. Hot Working Technology, 2014,43(23):163−165. (袁红军, 李永林, 赵洪章, 等. TA18钛合金管冷轧开裂原因分析[J]. 热加工工艺, 2014,43(23):163−165.
    [5] Wang Tiejun. Further investigation of a new continuum damage mechanics criterion for ductile fracture: Experimental verification and applications[J]. Engineering Fracture Mechanics, 1994,48(2):217−230.
    [6] Park Sung Ju, Cerik Burak Can, Choung Joonmo. Comparative study on ductile fracture prediction of high-tensile strength marine structural steels[J]. Ships and Offshore Structures, 2021,15(S1):208−219.
    [7] Bao Yingbin, Tomasz Wierzbicki. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004,46(1):81−98. doi: 10.1016/j.ijmecsci.2004.02.006
    [8] Ye Hongde, Dang Hengyao, Li Hui, et al. Research on notched tensile properties and critical damage parameters of marine 10CrNiCu steel[J]. China Shipbuilding, 2019,60(2):50−58. (叶宏德, 党恒耀, 李慧, 等. 船用10CrNiCu钢缺口拉伸性能及临界损伤参数研究[J]. 中国造船, 2019,60(2):50−58. doi: 10.3969/j.issn.1000-4882.2019.02.005
    [9] Yu Wanqian, Yu Rui, Cui Shitang. Research on ductile fracture of 30CrMnSiNi2A steel considering the influence of stress triaxiality[J]. Explosion and Shock, 2021,41(3):47−54. (余万千, 郁锐, 崔世堂. 考虑应力三轴度影响的30CrMnSiNi2A钢韧性断裂研究[J]. 爆炸与冲击, 2021,41(3):47−54.
    [10] 陈继恩. 基于应力三轴度的材料失效研究[D]. 武汉: 华中科技大学, 2012.

    Chen Ji, en. Research on material failure based on stress triaxiality[D]. Wuhan: Huazhong University of Science and Technology, 2012.
    [11] Li Tang, Wang Qingyuan, Yue Zhufeng. Experimental study on ductile fracture mechanism of aluminum alloy 2A12[J]. Experimental Mechanics, 2006,(6):763−768. (李棠, 王清远, 岳珠峰. 铝合金2A12韧性断裂机制的实验研究[J]. 实验力学, 2006,(6):763−768. doi: 10.3969/j.issn.1001-4888.2006.06.013
    [12] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969,17:201−217. doi: 10.1016/0022-5096(69)90033-7
    [13] Zhong Peidao. Fracture failure analysis[J]. Physical Testing and Chemical Testing (Physics Section), 2005,(7):375−378. (钟培道. 断裂失效分析[J]. 理化检验(物理分册), 2005,(7):375−378.
    [14] Liu Lixi, Zheng Qingli, Zhu Jian, et al. The effect of stress triaxiality and Rhodes parameter on the ductile fracture of aluminum alloys (English)[J]. Rare Metal Materials and Engineering, 2019,48(2):433−439. (刘立熙, 郑清丽, 朱健, 等. 应力三轴度和罗德参数对铝合金韧性断裂的影响[J]. 稀有金属材料与工程, 2019,48(2):433−439.
    [15] Bridgman P W. Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure [M]. New York: Mc Graw Hill, 1952.
    [16] Goto D M, Koss D A, Jablokov V. The influence of tensile stress states on the failure of HY-100 steel [J]. Metallurgical and Materials Transactions A, 1999,30A:2835−2842.
    [17] Johnson Gordon R, Cook William H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985,21(1):31−48.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  29
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-09
  • 录用日期:  2021-11-19
  • 刊出日期:  2021-12-31

目录

    /

    返回文章
    返回