留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惰性气氛下热分解法制备M相二氧化钒超细颗粒

尹翔鹭 曾泽华 高荣荣 代宇 滕艾均

尹翔鹭, 曾泽华, 高荣荣, 代宇, 滕艾均. 惰性气氛下热分解法制备M相二氧化钒超细颗粒[J]. 钢铁钒钛, 2022, 43(1): 1-6. doi: 10.7513/j.issn.1004-7638.2022.01.001
引用本文: 尹翔鹭, 曾泽华, 高荣荣, 代宇, 滕艾均. 惰性气氛下热分解法制备M相二氧化钒超细颗粒[J]. 钢铁钒钛, 2022, 43(1): 1-6. doi: 10.7513/j.issn.1004-7638.2022.01.001
Yin Xianglu, Zeng Zehua, Gao Rongrong, Dai Yu, Teng Aijun. Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 1-6. doi: 10.7513/j.issn.1004-7638.2022.01.001
Citation: Yin Xianglu, Zeng Zehua, Gao Rongrong, Dai Yu, Teng Aijun. Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 1-6. doi: 10.7513/j.issn.1004-7638.2022.01.001

惰性气氛下热分解法制备M相二氧化钒超细颗粒

doi: 10.7513/j.issn.1004-7638.2022.01.001
详细信息
    作者简介:

    尹翔鹭(1990—),男,山东潍坊人,研究生,工程师,主要研究方向:纳米功能材料,E-mail:Xiangluyin@163.com

  • 中图分类号: TF841.3

Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere

  • 摘要: M相二氧化钒(VO2)是一种主要的热致相变材料,相变温度为68 ℃。由于相变前后会发生明显的物理化学性质的变化,M相VO2可以广泛应用在相变节能和传感等领域。采用草酸氧钒作为前驱体,在惰性气氛中直接热分解制备M相VO2超细颗粒。探究了主要反应条件:热解温度、热解时间和气体流速对产物物相纯度的影响。在最优的制备条件(热解温度450 ℃,热解时间30 min,氩气流速2.0 L/min)下,制备了较纯的M相VO2超细颗粒。采用扫描电镜、差示热分析仪表征了产物的形貌和相变性能。制备的M相VO2颗粒主要为类长方体形的微米级颗粒,在其表面附着大量不规则形貌的纳米级细小颗粒,微米级颗粒平均尺寸为5.76 μm,纳米级颗粒平均尺寸为177.21 nm,相变温度为65 ℃。该方法简单高效、易于放大制备M相VO2超细颗粒。
  • 图  1  草酸氧钒的热重曲线

    Figure  1.  TG curve of vanadyl oxalate

    图  2  不同热分解时间下产物的XRD谱

    Figure  2.  XRD spectra of prepared samples in different pyrolysis time

    图  3  不同温度下热分解产物的XRD谱

    Figure  3.  XRD spectra of prepared samples in different pyrolysis temperature

    (a) 350 ℃;(b) 400 ℃;(c) 450 ℃;(d) 500 ℃

    图  4  不同气流速度下热分解产物的XRD谱

    Figure  4.  XRD spectra of prepared samples in different gas velocity

    (a) 0.5 L/min;(b) 1.5 L/min;(c) 2.0 L/min;(d) 2.5 L/min

    图  5  M相VO2的扫描电镜形貌和相应的元素分布

    (a) M相VO2的SEM形貌;(b) 氧元素分布;(c) 钒元素分布

    Figure  5.  SEM images of M-phase VO2(a) and relevant elements distribution maps(b-O, c-V)

    图  6  M相VO2超细颗粒的SEM形貌及尺寸分布

    (a) 1 000倍;(b) 5 000倍;(c) 微米级颗粒的尺寸分布;(d) 纳米级颗粒的尺寸分布

    Figure  6.  SEM images of M-phase VO2 nanoparticles and size distribution

    图  7  产品的差示热分析曲线

    Figure  7.  DSC curve of prepared sample

  • [1] Wang Shufen, Liu Minsu, Kong Lingbing, et al. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties[J]. Progress in Materials Science, 2016,81:1−54. doi: 10.1016/j.pmatsci.2016.03.001
    [2] Li Kaibin, Li Ming, Xu Chang, et al. VO2(M) nanoparticles with controllable phase transition and high nanothermochromic performance[J]. Journal of Alloys and Compounds, 2019,11:5602.
    [3] Zhu Guang, Huo Yuehua, Shi Yanqiong. Switchable broadband terahertz absorber based on temperature control[J]. Laser & Optoelectronics Progress, 2021,58(13):1316001. (朱广, 霍跃华, 史艳琼. 基于温度控制的可切换宽带太赫兹吸波器[J]. 激光与光电子学进展, 2021,58(13):1316001.
    [4] Negm Ayman, Bakr Mohamed, Howlader Matiar, et al. Switching plasmonic resonance in multi-gap infrared metasurface absorber using vanadium dioxide patches[J]. Smart Materials and Structures, 2021,30(7):075011. doi: 10.1088/1361-665X/abfb86
    [5] Liu Ying. Xu Xiang. Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity[J]. Nano Energy, 2021,86:106124. doi: 10.1016/j.nanoen.2021.106124
    [6] Morin F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Physical Review Letters, 1959,3:34−36. doi: 10.1103/PhysRevLett.3.34
    [7] Leroux C, Nihoul G, Tendeloo G V. From VO2(B) to VO2(R): Theoretical structures of VO2 polymorphs and in situ electron microscopy[J]. Phys. rev. b, 1998,57:5111−5121.
    [8] Wen Zeng, Chen Nan, Xie Weiguang. Research progress on the preparation methods for VO2 nanoparticles and their application in smart windows[J]. Cryst Eng. Comm., 2020,22:851−869. doi: 10.1039/C9CE01655D
    [9] Amador-Alvarado S, Flores-Camacho J M, Solís-Zamudio A, et al. Temperature-dependent infrared ellipsometry of Mo-doped VO2 thin films across the insulator to metal transition[J]. Scientific Reports, 2020, 10: 8555.
    [10] Luo Juan, Hu Fangrong, Li Guangyuan. Broadband switchable terahertz half-quarter-wave plate based on VO2-metal hybrid metasurface with over underdamped transition[J]. Journal of Physics D: Applied Physics , 2021, 54: 505111.
    [11] Yi Jing, Yan Wenbin, Zhang Xiaojun, et al. Hydrothermal synthesis of nano vanadium oxide powder[J]. Fine Chemicals, 2016,33(4):361−365. (易静, 颜文斌, 张晓君, 等. 水热法制备纳米二氧化钒粉体[J]. 精细化工, 2016,33(4):361−365.
    [12] Liu Bo, Peng Sui, Chen Yong, et al. Effect of chemical precipitation process on particle size of VO precursor and its hydrothermal crystallization[J]. Iron Steel Vanadium Titanium, 2020,41(5):58−65. (刘波, 彭穗, 陈勇, 等. 化学沉淀过程对VO2前驱体粒径的影响及其水热晶化的研究[J]. 钢铁钒钛, 2020,41(5):58−65.
    [13] Jongbae Kim, Lee Donguk Lee, Yeo Inyeok, et al. Hydrothermal synthesis of monoclinic vanadium dioxide nanocrystals using phase-pure vanadium precursors for high-performance smart windows[J]. Solar Energy Materials and Solar Cells, 2021,226:111055. doi: 10.1016/j.solmat.2021.111055
    [14] Sa L, Ea T. Synthesis of vandium of vandium oxide powders by evaporative decomposition of solutions[J]. Journal of the American Ceramic Society, 1995,1:104−108.
    [15] Zhao Zhengjing, Yi Liu, Yu Zhinong, et al. Sn-W Co-doping improves thermochromic performance of VO2 films for smart windows[J]. ACS Applied Energy Materials, 2020,3(10):9972−9979. doi: 10.1021/acsaem.0c01651
    [16] Chen Zhang, Gao Yanfeng, Kang Litao, et al. Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil[J]. Journal of Materials Chemistry, 2014,2:2781. doi: 10.1039/c3ta13727a
    [17] Li Dengbing, Li Ming, Pan Jing, et al. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance[J]. Acs Applied Materials & Interfaces, 2014,6(9):6555−6561.
    [18] Huang Weigang, Lin Hua, Tu Mingjing. Preparation of VO2 nanopowder by thermal decomposition of VOC2O4·H2O and its phase transition characteristic[J]. Journal of Functional Materials, 2006,3:440−441. (黄维刚, 林华, 涂铭旌. VOC2O4·H2O热分解制备纳米VO2粉体及相变特性[J]. 功能材料, 2006,3:440−441. doi: 10.3321/j.issn:1001-9731.2006.03.031
    [19] Peng Zifei, Wei Jiang, Liu Heng. Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis[J]. The Journal of Physical Chemistry C, 2007,111:1119−1122.
    [20] Kong Fongyu, Li Ming, Pan Shusheng, et al. Synthesis and thermal stability of W-doped VO2 nanocrystals[J]. Materials Research Bulletin ,2011, 46: 2100-2104.
    [21] Lin Hua, Zou Jian, Li Qing. Preparation and characterization of VO2 nano-powder by thermal decomposing VOC2O4·H2O[J]. Iron Steel Vanadium Titanium, 2006,21(1):55−58. (林华, 邹建, 李庆. 草酸氧钒热分解制备纳米VO2及粉体表征[J]. 钢铁钒钛, 2006,21(1):55−58.
  • 加载中
图(7)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  45
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回