中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惰性气氛下热分解法制备M相二氧化钒超细颗粒

尹翔鹭 曾泽华 高荣荣 代宇 滕艾均

尹翔鹭, 曾泽华, 高荣荣, 代宇, 滕艾均. 惰性气氛下热分解法制备M相二氧化钒超细颗粒[J]. 钢铁钒钛, 2022, 43(1): 1-6. doi: 10.7513/j.issn.1004-7638.2022.01.001
引用本文: 尹翔鹭, 曾泽华, 高荣荣, 代宇, 滕艾均. 惰性气氛下热分解法制备M相二氧化钒超细颗粒[J]. 钢铁钒钛, 2022, 43(1): 1-6. doi: 10.7513/j.issn.1004-7638.2022.01.001
Yin Xianglu, Zeng Zehua, Gao Rongrong, Dai Yu, Teng Aijun. Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 1-6. doi: 10.7513/j.issn.1004-7638.2022.01.001
Citation: Yin Xianglu, Zeng Zehua, Gao Rongrong, Dai Yu, Teng Aijun. Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 1-6. doi: 10.7513/j.issn.1004-7638.2022.01.001

惰性气氛下热分解法制备M相二氧化钒超细颗粒

doi: 10.7513/j.issn.1004-7638.2022.01.001
详细信息
    作者简介:

    尹翔鹭(1990—),男,山东潍坊人,研究生,工程师,主要研究方向:纳米功能材料,E-mail:Xiangluyin@163.com

  • 中图分类号: TF841.3

Thermolysis preparation of monoclinic phase vanadium dioxide with ultrafine particles under an inert gas atmosphere

  • 摘要: M相二氧化钒(VO2)是一种主要的热致相变材料,相变温度为68 ℃。由于相变前后会发生明显的物理化学性质的变化,M相VO2可以广泛应用在相变节能和传感等领域。采用草酸氧钒作为前驱体,在惰性气氛中直接热分解制备M相VO2超细颗粒。探究了主要反应条件:热解温度、热解时间和气体流速对产物物相纯度的影响。在最优的制备条件(热解温度450 ℃,热解时间30 min,氩气流速2.0 L/min)下,制备了较纯的M相VO2超细颗粒。采用扫描电镜、差示热分析仪表征了产物的形貌和相变性能。制备的M相VO2颗粒主要为类长方体形的微米级颗粒,在其表面附着大量不规则形貌的纳米级细小颗粒,微米级颗粒平均尺寸为5.76 μm,纳米级颗粒平均尺寸为177.21 nm,相变温度为65 ℃。该方法简单高效、易于放大制备M相VO2超细颗粒。
  • 图  1  草酸氧钒的热重曲线

    Figure  1.  TG curve of vanadyl oxalate

    图  2  不同热分解时间下产物的XRD谱

    Figure  2.  XRD spectra of prepared samples in different pyrolysis time

    图  3  不同温度下热分解产物的XRD谱

    Figure  3.  XRD spectra of prepared samples in different pyrolysis temperature

    (a) 350 ℃;(b) 400 ℃;(c) 450 ℃;(d) 500 ℃

    图  4  不同气流速度下热分解产物的XRD谱

    Figure  4.  XRD spectra of prepared samples in different gas velocity

    (a) 0.5 L/min;(b) 1.5 L/min;(c) 2.0 L/min;(d) 2.5 L/min

    图  5  M相VO2的扫描电镜形貌和相应的元素分布

    (a) M相VO2的SEM形貌;(b) 氧元素分布;(c) 钒元素分布

    Figure  5.  SEM images of M-phase VO2(a) and relevant elements distribution maps(b-O, c-V)

    图  6  M相VO2超细颗粒的SEM形貌及尺寸分布

    (a) 1 000倍;(b) 5 000倍;(c) 微米级颗粒的尺寸分布;(d) 纳米级颗粒的尺寸分布

    Figure  6.  SEM images of M-phase VO2 nanoparticles and size distribution

    图  7  产品的差示热分析曲线

    Figure  7.  DSC curve of prepared sample

  • [1] Wang Shufen, Liu Minsu, Kong Lingbing, et al. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties[J]. Progress in Materials Science, 2016,81:1−54. doi: 10.1016/j.pmatsci.2016.03.001
    [2] Li Kaibin, Li Ming, Xu Chang, et al. VO2(M) nanoparticles with controllable phase transition and high nanothermochromic performance[J]. Journal of Alloys and Compounds, 2019,11:5602.
    [3] Zhu Guang, Huo Yuehua, Shi Yanqiong. Switchable broadband terahertz absorber based on temperature control[J]. Laser & Optoelectronics Progress, 2021,58(13):1316001. (朱广, 霍跃华, 史艳琼. 基于温度控制的可切换宽带太赫兹吸波器[J]. 激光与光电子学进展, 2021,58(13):1316001.
    [4] Negm Ayman, Bakr Mohamed, Howlader Matiar, et al. Switching plasmonic resonance in multi-gap infrared metasurface absorber using vanadium dioxide patches[J]. Smart Materials and Structures, 2021,30(7):075011. doi: 10.1088/1361-665X/abfb86
    [5] Liu Ying. Xu Xiang. Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity[J]. Nano Energy, 2021,86:106124. doi: 10.1016/j.nanoen.2021.106124
    [6] Morin F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Physical Review Letters, 1959,3:34−36. doi: 10.1103/PhysRevLett.3.34
    [7] Leroux C, Nihoul G, Tendeloo G V. From VO2(B) to VO2(R): Theoretical structures of VO2 polymorphs and in situ electron microscopy[J]. Phys. rev. b, 1998,57:5111−5121.
    [8] Wen Zeng, Chen Nan, Xie Weiguang. Research progress on the preparation methods for VO2 nanoparticles and their application in smart windows[J]. Cryst Eng. Comm., 2020,22:851−869. doi: 10.1039/C9CE01655D
    [9] Amador-Alvarado S, Flores-Camacho J M, Solís-Zamudio A, et al. Temperature-dependent infrared ellipsometry of Mo-doped VO2 thin films across the insulator to metal transition[J]. Scientific Reports, 2020, 10: 8555.
    [10] Luo Juan, Hu Fangrong, Li Guangyuan. Broadband switchable terahertz half-quarter-wave plate based on VO2-metal hybrid metasurface with over underdamped transition[J]. Journal of Physics D: Applied Physics , 2021, 54: 505111.
    [11] Yi Jing, Yan Wenbin, Zhang Xiaojun, et al. Hydrothermal synthesis of nano vanadium oxide powder[J]. Fine Chemicals, 2016,33(4):361−365. (易静, 颜文斌, 张晓君, 等. 水热法制备纳米二氧化钒粉体[J]. 精细化工, 2016,33(4):361−365.
    [12] Liu Bo, Peng Sui, Chen Yong, et al. Effect of chemical precipitation process on particle size of VO precursor and its hydrothermal crystallization[J]. Iron Steel Vanadium Titanium, 2020,41(5):58−65. (刘波, 彭穗, 陈勇, 等. 化学沉淀过程对VO2前驱体粒径的影响及其水热晶化的研究[J]. 钢铁钒钛, 2020,41(5):58−65.
    [13] Jongbae Kim, Lee Donguk Lee, Yeo Inyeok, et al. Hydrothermal synthesis of monoclinic vanadium dioxide nanocrystals using phase-pure vanadium precursors for high-performance smart windows[J]. Solar Energy Materials and Solar Cells, 2021,226:111055. doi: 10.1016/j.solmat.2021.111055
    [14] Sa L, Ea T. Synthesis of vandium of vandium oxide powders by evaporative decomposition of solutions[J]. Journal of the American Ceramic Society, 1995,1:104−108.
    [15] Zhao Zhengjing, Yi Liu, Yu Zhinong, et al. Sn-W Co-doping improves thermochromic performance of VO2 films for smart windows[J]. ACS Applied Energy Materials, 2020,3(10):9972−9979. doi: 10.1021/acsaem.0c01651
    [16] Chen Zhang, Gao Yanfeng, Kang Litao, et al. Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil[J]. Journal of Materials Chemistry, 2014,2:2781. doi: 10.1039/c3ta13727a
    [17] Li Dengbing, Li Ming, Pan Jing, et al. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance[J]. Acs Applied Materials & Interfaces, 2014,6(9):6555−6561.
    [18] Huang Weigang, Lin Hua, Tu Mingjing. Preparation of VO2 nanopowder by thermal decomposition of VOC2O4·H2O and its phase transition characteristic[J]. Journal of Functional Materials, 2006,3:440−441. (黄维刚, 林华, 涂铭旌. VOC2O4·H2O热分解制备纳米VO2粉体及相变特性[J]. 功能材料, 2006,3:440−441. doi: 10.3321/j.issn:1001-9731.2006.03.031
    [19] Peng Zifei, Wei Jiang, Liu Heng. Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis[J]. The Journal of Physical Chemistry C, 2007,111:1119−1122.
    [20] Kong Fongyu, Li Ming, Pan Shusheng, et al. Synthesis and thermal stability of W-doped VO2 nanocrystals[J]. Materials Research Bulletin ,2011, 46: 2100-2104.
    [21] Lin Hua, Zou Jian, Li Qing. Preparation and characterization of VO2 nano-powder by thermal decomposing VOC2O4·H2O[J]. Iron Steel Vanadium Titanium, 2006,21(1):55−58. (林华, 邹建, 李庆. 草酸氧钒热分解制备纳米VO2及粉体表征[J]. 钢铁钒钛, 2006,21(1):55−58.
  • 加载中
图(7)
计量
  • 文章访问数:  576
  • HTML全文浏览量:  144
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回