留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酸性钒溶液中锰的脱除研究进展

张菊花 梁月 常雨微 惠旭杰

张菊花, 梁月, 常雨微, 惠旭杰. 酸性钒溶液中锰的脱除研究进展[J]. 钢铁钒钛, 2022, 43(1): 19-27. doi: 10.7513/j.issn.1004-7638.2022.01.004
引用本文: 张菊花, 梁月, 常雨微, 惠旭杰. 酸性钒溶液中锰的脱除研究进展[J]. 钢铁钒钛, 2022, 43(1): 19-27. doi: 10.7513/j.issn.1004-7638.2022.01.004
Zhang Juhua, Liang Yue, Chang Yuwei, Hui Xujie. Research progress on removal of manganese from acidic vanadium solution[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 19-27. doi: 10.7513/j.issn.1004-7638.2022.01.004
Citation: Zhang Juhua, Liang Yue, Chang Yuwei, Hui Xujie. Research progress on removal of manganese from acidic vanadium solution[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 19-27. doi: 10.7513/j.issn.1004-7638.2022.01.004

酸性钒溶液中锰的脱除研究进展

doi: 10.7513/j.issn.1004-7638.2022.01.004
基金项目: 国家自然科学基金青年基金(编号:51804230,51804228);校青年科技骨干培育计划项目(编号:2017xz003)。
详细信息
    作者简介:

    张菊花(1985—),女,山西忻州人,副教授,研究方向为有色金属冶金,E-mail:zhangjuhua@wust.edu.cn

  • 中图分类号: TF841.3

Research progress on removal of manganese from acidic vanadium solution

  • 摘要: 钙化焙烧-酸浸是一种极具应用前景的清洁提钒工艺,但是所得酸性含钒溶液中锰的含量较高,严重影响钒产品的品质及其应用,因此,对酸性钒溶液中锰的脱除研究亟不可待。对近年来国内外不同溶液体系以及酸性钒溶液中锰的去除进行了综述,阐明了不同溶液锰的去除方法的原理、脱除条件以及除锰效果,并对酸性钒溶液中杂质锰的脱除方法进行了探讨,为高效、高选择性、低成本脱除酸性含钒溶液中的杂质锰提供理论和技术指导。基于酸性含钒溶液体系对除锰剂及除锰方法选择的具体要求,在理论上过硫酸铵氧化法、萃取法和离子交换法适用于该体系中杂质锰的脱除,但具体脱除效果、操作条件和作用机理需进一步研究。
  • 图  1  25 ℃和100 ℃下的Mn-H2O系E-pH关系

    Figure  1.  E-pH graph for Mn-H2O system at 25 ℃ and 100 ℃

    [Mn]= 1 mol/kg,100 kPa

    图  2  25 ℃下Me-H2O系E-pH关系

    Me=Ni、Co和Zn,[Me]= 1 mol/kg,100 kPa

    Figure  2.  E-pH graph for Me-H2O system at 25 ℃

    图  3  25、55 ℃和100 ℃下的V-H2O系E-pH关系

    Figure  3.  E-pH diagram for V-H2O system at 25, 55 ℃ and 100 ℃

    [V] =1 mol/kg, 100 kPa

    表  1  不同酸度水溶液中锰的吸附回收率

    Table  1.   Sorption recovery of manganese (II) from aqueous solutions with different acidity

    离子交换树脂试验类型回收率/%log D
    KB-2D (DVB)A82 ± 53.82 ± 0.23
    B78 ± 43.75 ± 0.22
    KB-2M (DVEDEG)A~1004.26 ± 0.26
    B~1004.22 ± 0.25
    KB-2M (DVETEG)A92 ± 54.02 ± 0.24
    B90 ± 53.98 ± 0.19
    KB-2M (DVEPG)A93 ± 54.11 ± 0.21
    B90 ± 54.06 ± 0.24
    KB-2T (TVEPE)A~1004.25 ± 0.21
    B~1004.22 ± 0.25
    KB-2S (DVS)A94 ± 54.07 ± 0.21
    B92 ± 54.01 ± 0.19
    注:其中,A代表Mn (II) + 0.001 M HCl; B代表Mn(II) + 0.5 M HCl。D=$ \dfrac{{EC}}{{C_{{\rm{eq}}}}} $(EC为树脂与锰的交换容量;Ceq为Mn(II)的平衡摩尔浓度); logD为离子交换平衡常数。
    下载: 导出CSV
  • [1] Chang Fuzeng, Zhao Beibei, Huang Shanshan, et al. Research status and prospect of vanadium extraction technology from vanadium-titanium magnetite[J]. Iron Steel Vanadium Titanium, 2018,39(5):71−78. (常福增, 赵备备, 黄山珊, 等. 钒钛磁铁矿提钒技术研究现状与展望[J]. 钢铁钒钛, 2018,39(5):71−78.
    [2] Zhang Juhua, Liang Yue, Zhang Wei, et al. Recovery of manganese from the mother liquor after vanadium precipitation during vanadium extraction with calcified roasting and acid leaching process[J]. Chinese Journal of Process Engineering, 2020,20(10):1174−1181. (张菊花, 梁月, 张伟, 等. 钙化酸浸提钒沉钒母液中锰的回收[J]. 过程工程学报, 2020,20(10):1174−1181. doi: 10.12034/j.issn.1009-606X.219354
    [3] Gao Yi, Liu Hongjie. Manganese ore resources status and potential forecast[J]. China Manganese Industry, 2020,38(2):1−5. (高艺, 刘宏杰. 锰矿资源现状及潜力预测[J]. 中国锰业, 2020,38(2):1−5.
    [4] Ying Jierong, Zhu Dahe, Bao Fuyi, et al. Removal of manganese from cobalt chloride solution by potassium permanganate oxidation precipitation[J]. Nonferrous Metals, 1996,48(3):4. (应皆荣, 朱大和, 包福毅, 等. 高锰酸钾氧化沉淀法脱除氯化钴溶液中的锰[J]. 有色金属, 1996,48(3):4.
    [5] Zhou Fengyun. Discussion on the new process experience of removal of manganese and iron from wet nickel sulfate[J]. Chemical Management, 2014,5(2):213−214. (周凤云. 从湿法硫酸镍中去除锰、铁的新工艺经验谈[J]. 化工管理, 2014,5(2):213−214.
    [6] Chen Yingbo, Wang Lei, Ma Jiejun, et al. Study on removal of manganese in acid leaching solution of cathode material of waste lithium battery by oxidation method[J]. Non-ferrous Metal Engineering, 2020,10(1):55−61. (陈莹博, 王磊, 马洁珺, 等. 氧化法去除废旧锂电池正极材料酸浸液中锰的研究[J]. 有色金属工程, 2020,10(1):55−61. doi: 10.3969/j.issn.2095-1744.2020.01.009
    [7] Vincent M, George P, Demopoulos. Gas transfer kinetics and redox potential considerations in oxidative precipitation of manganese from an industrial zinc sulphate solution with SO2/O2[J]. Hydrometallurgy, 2007,89(1):357−368.
    [8] Zhang W S, Cheng C Y. Manganese metallurgy review. Part II: Manganese separation and recovery from solution[J]. Hydrometallurgy, 2007,89(3-4):160−177.
    [9] Zhang W S, Singh P, Muir D. Oxidative precipitation of manganese with SO2/O2 and separation from cobalt and nickel[J]. Hydrometallurgy, 2002,63(2):127−135. doi: 10.1016/S0304-386X(01)00205-5
    [10] Menard V, George P Demopoulos. Gas transfer kinetics and redox potential considerations in oxidative recipitation of manganese from an industrial zinc sulphate solution with SO2/O2[J]. Hydrometallurgy, 2007,89(3-4):357−368.
    [11] Zhang W S, Cheng C Y, Pranolo Y. Investigation of methods for removal and recovery of manganese in hydrometallurgical processes[J]. Hydrometallurgy, 2010,101(2):58−63.
    [12] Silva A M, Cruz F L S, Lima R M F, et al. Manganese and limestone interactions during mine water treatment[J]. Journal of Hazardous Materials, 2010,181(1):514−520.
    [13] Silva A M, Cunha E C, Silva F D R, et al. Treatment of high-manganese mine water with limestone and sodium carbonate[J]. Journal of Cleaner Production, 2012,29(1):11−19.
    [14] Mei Ying, Xue Yuhua, Ye Hengpeng, et al. Selective separation and recovery of manganese in wastewater containing manganese by carbon dioxide[J]. Journal of Chemical Industry, 2017,68(7):2798−2804. (梅颖, 薛余化, 叶恒朋, 等. 利用二氧化碳选择性分离回收含锰废水中的锰[J]. 化工学报, 2017,68(7):2798−2804.
    [15] Du Bing, Zhou Changbo, Zeng Ming, et al. Recovery of soluble manganese in electrolytic manganese slag[J]. Chemical Environmental Protection, 2010,30(6):56−59. (杜兵, 周长波, 曾鸣, 等. 回收电解锰渣中的可溶性锰[J]. 化工环保, 2010,30(6):56−59.
    [16] Wang N F, Fang Z J, Sui P, et al. Recovery of soluble manganese from electrolyte manganese residue using a combination of ammonia and CO2[J]. Hydrometallurgy, 2016,164(2):288−294.
    [17] Du Dongyun, Mei Ying, Yu Chen, et al. Crystallization kinetics of soluble manganese in CO2 recovery of electrolytic manganese slag[J]. Journal of South-Central University for Nationalities (Natural Science Edition), 2017,36(3):1−5. (杜冬云, 梅颖, 于宸, 等. CO2回收电解锰渣中可溶性锰的结晶动力学[J]. 中南民族大学学报(自然科学版), 2017,36(3):1−5.
    [18] Fan Xingxiang, Peng Jinhui, Zhang Libo, et al. Study on the process of removing Mn2+ from ZnSO4 solution by ammonium persulfate oxidation[J]. Nonferrous Mining and Metallurgy, 2002,18(2):38−41. (范兴祥, 彭金辉, 张利波, 等. 过硫酸铵氧化法除去ZnSO4溶液中Mn2+的工艺研究[J]. 有色矿冶, 2002,18(2):38−41. doi: 10.3969/j.issn.1007-967X.2002.02.009
    [19] Yang Zhifeng, Ren Jie. Research and application of ammonium persulfate in removal of manganese in zinc smelting system[J]. China Nonferrous Metals, 2019,48(2):76−78. (杨志锋, 任杰. 过硫酸铵在湿法锌冶炼系统中除锰的研究与应用[J]. 中国有色冶金, 2019,48(2):76−78. doi: 10.3969/j.issn.1672-6103.2019.02.021
    [20] 张菊花. 转炉钒渣制备V2O5清洁工艺的研究[D]. 沈阳: 东北大学, 2014.

    Zhang Juhua. Research on V2O5 clean process of vanadium slag in converter[D]. Shenyang: Northeastern University, 2014.
    [21] 杨晓, 李道玉. 草酸盐从钒渣酸浸液中除锰试验研究[C]// 第十二届中国钢铁年会论文集. 北京: 冶金工业出版社, 2019: 223-227.

    Yang Xiao, Li Daoyu. Experimental research on removal of manganese from vanadium residue acid leaching solution by oxalate[C]// The 12th Annual Meeting of China Iron and Steel Papers. Beijing: Metallurgical Industry Press, 2019: 223-227.
    [22] Tian Qingyun, Jiang Can, Tan Zhengde, et al. Study on the recovery process of manganese extraction by P204[J]. Guangdong Chemical Industry, 2014,41(1):52−53. (田青云, 姜灿, 谭正德, 等. P204对锰的萃取的回收工艺的研究[J]. 广东化工, 2014,41(1):52−53. doi: 10.3969/j.issn.1007-1865.2014.01.025
    [23] Hossain M R, Nash S, Rose G, et al. Cobalt loaded D2EHPA for selective separation of manganese from cobalt electrolyte solution[J]. Hydrometallurgy, 2011,107(3):137−140.
    [24] Guo Qiusong, Liu Zhiqiang, Zhu Wei, et al. D2 EHPA/TBP synergistic extraction to remove iron, chromium and manganese to prepare ultrapure vanadyl sulfate[J]. Materials Research and Application, 2013,7(2):77−81. (郭秋松, 刘志强, 朱薇, 等. D2EHPA/TBP协同萃取除铁铬锰制备超纯硫酸氧钒[J]. 材料研究与应用, 2013,7(2):77−81. doi: 10.3969/j.issn.1673-9981.2013.02.003
    [25] Zhuang Haibo, Yang Lin, Deng Qiang, et al. Study on the dynamic adsorption of removing manganese ion in phosphoric acid by ion exchange method[J]. Inorganic Salt Industry, 2021,53(1):18−23. (庄海波, 杨林, 邓强, 等. 离子交换法脱除磷酸中锰离子的动态吸附研究[J]. 无机盐工业, 2021,53(1):18−23. doi: 10.11962/1006-4990.2020-0096
    [26] Zhang Xiangyu, Song Baohua, Li Meng, et al. Study on the recovery of manganese in electrolytic metal manganese wastewater by ion exchange method[J]. China Manganese Industry, 2013,31(4):33−36. (张翔宇, 宋宝华, 李萌, 等. 离子交换法回收电解金属锰废水中锰的研究[J]. 中国锰业, 2013,31(4):33−36. doi: 10.3969/j.issn.1002-4336.2013.04.011
    [27] Kononova G L, Bryuzgina O V, Apchitaeva Y, et al. Ion exchange recovery of chromium (VI) and manganese (II) from aqueous solutions[J]. Arabian Journal of Chemistry, 2019,12(8):34−37.
    [28] Wan Hongqiang, Ning Shunming. Study on the kinetics of ion exchange resin adsorption of vanadium[J]. Mining and Metallurgical Engineering, 2010,30(4):73−76. (万洪强, 宁顺明. 离子交换树脂吸附钒的动力学研究[J]. 矿冶工程, 2010,30(4):73−76. doi: 10.3969/j.issn.0253-6099.2010.04.019
    [29] Goher M E, Hassan A M, Ibrahim A, et al. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H[J]. The Egyptian Journal of Aquatic Research, 2015,41(2):155−164. doi: 10.1016/j.ejar.2015.04.002
    [30] García-Mendieta A, Solache-Ríos M, Olguín M T. Evaluation of the sorption properties of a Mexican clinoptilolite-rich tuff for ironmanganese and iron–manganese systems[J]. Microporous and Mesoporous Materials, 2008,118(1-3):489−495.
    [31] Muhammad I, Batool S, Hidayat U, et al. Adsorption and thermodynamic mechanisms of manganese removal from aqueous media by biowaste-derived biochars[J]. Journal of Molecular Liquids, 2018,266(1):373−380.
    [32] Nevenka R, Djordje S, Sanja J, et al. Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in Serbia[J]. Journal of Hazardous Materials, 2009,172(2):1450−1457.
    [33] Liu Shaozhong. Study on the application of electrochemical treatment of heavy metal wastewater[J]. Industrial Water Treatment, 2020,30(4):86−88. (刘绍忠. 电化学法处理重金属废水的应用研究[J]. 工业水处理, 2020,30(4):86−88.
    [34] 贺宁, 熊珊, 熊道文, 等. 电絮凝法处理含锰废水试验研究[J]. 工业用水与废水, 2013, 44(6): 24-26.

    He Ning, Xiong Shan, Xiong Daowen, et al. Experimental study on the treatment of manganese-containing wastewater by electrocoagulation[J]. Industrial Water and Wastewater, 2013, 44(6): 24-26.
    [35] Ganesan P, Lakshmi J, Sozhan G, et al. Removal of manganese from water by electrocoagulation: Adsorption, kinetics and thermo ynamic studies[J]. The Canadian Journal of Chemical Engineering, 2013, 91(3): 448-458.
    [36] Shafaei A, Rezayee M, Arami M, et al. Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process[J]. Desalination, 2010,260(1):23−28.
    [37] Chen Yan. Experimental study on recovery of metallic manganese from vanadium extraction wastewater[J]. Iron Steel VanadiumTitanium, 2019,40(4):90−94. (陈燕. 从提钒废水中回收金属锰的试验研究[J]. 钢铁钒钛, 2019,40(4):90−94. doi: 10.7513/j.issn.1004-7638.2019.04.017
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  34
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回