留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理工艺对ZTC4钛合金显微组织及性能的影响研究

冉兴 王哲 吕志刚 曹建 陈垚 杨朝荣 李培杰

冉兴, 王哲, 吕志刚, 曹建, 陈垚, 杨朝荣, 李培杰. 热处理工艺对ZTC4钛合金显微组织及性能的影响研究[J]. 钢铁钒钛, 2022, 43(1): 48-52. doi: 10.7513/j.issn.1004-7638.2022.01.008
引用本文: 冉兴, 王哲, 吕志刚, 曹建, 陈垚, 杨朝荣, 李培杰. 热处理工艺对ZTC4钛合金显微组织及性能的影响研究[J]. 钢铁钒钛, 2022, 43(1): 48-52. doi: 10.7513/j.issn.1004-7638.2022.01.008
Ran Xing, Wang Zhe, Lv Zhigang, Cao Jian, Chen Yao, Yang Chaorong, Li Peijie. Influence of heat treatment on microstructure and mechanical properties of ZTC4 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 48-52. doi: 10.7513/j.issn.1004-7638.2022.01.008
Citation: Ran Xing, Wang Zhe, Lv Zhigang, Cao Jian, Chen Yao, Yang Chaorong, Li Peijie. Influence of heat treatment on microstructure and mechanical properties of ZTC4 titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 48-52. doi: 10.7513/j.issn.1004-7638.2022.01.008

热处理工艺对ZTC4钛合金显微组织及性能的影响研究

doi: 10.7513/j.issn.1004-7638.2022.01.008
基金项目: 两机重大专项基础研究(J2019-Ⅶ-002)。
详细信息
    作者简介:

    冉兴(1968—),男,贵州松桃人,博士研究生,研究员,主要研究方向:熔模精密铸造,电话:0851-32208022,E-mail:2560680637@qq.com

    通讯作者:

    李培杰,博士,教授,主要研究方向:轻合金材料成型,E-mail:lipj@mail.tsinghua.edu.cn

  • 中图分类号: TF823,TG146.23

Influence of heat treatment on microstructure and mechanical properties of ZTC4 titanium alloy

  • 摘要: 采用金相显微镜(OM)研究了热处理制度对ZTC4钛合金显微组织的演变规律,以及显微组织对力学性能的影响关系。结果表明:ZTC4钛合金铸件由马氏体α′相组成,进行退火以及热等静压+退火热处理后,显微组织均为典型魏氏组织。ZTC4钛合金铸件退火后抗拉强度可达955 MPa,其延伸率和断面收缩率分别为8.8%和13.1%。采用热等静压+退火热处理后,抗拉强度降低至892 MPa,但其延伸率和断面收缩率升高至11.2%和21.4%。采用热等静压热处理,可破碎原始β相晶粒,形成破碎的晶界α相,提高ZTC4钛合金塑性性能。
  • 图  1  不同热处理工艺条件下ZTC4钛合金铸件显微组织

    (a)铸态;(b)退火;(c)热等静压;(d)热等静压+退火

    Figure  1.  Microstructures of ZTC4 titanium alloy castings at various heat treatments

    表  1  ZTC4钛合金铸件化学成分及验收标准

    Table  1.   Chemical compositions of ZTC4 titanium alloy casting and standard %

    ZTC4钛合金TiAlVFeSiCNHO
    铸锭成分Bal.6.404.380.190.020.0140.0060.0020.14
    GB/T 15073—1994Bal.5.5~6.83.5~4.5≤0.3≤0.15≤0.10≤0.05≤0.015≤0.20
    下载: 导出CSV

    表  2  不同热处理工艺条件下ZTC4钛合金显微组织参数

    Table  2.   Microstructure parameters of ZTC4 titanium alloy at various heat treatments

    热处理工艺平均片层α相尺寸/μm平均晶界α相尺寸/μm
    铸态1.13.5
    退火态2.54.8
    热等静压态4.67.6
    热等静压+退火态6.210.6
    下载: 导出CSV

    表  3  ZTC4钛合金在不同热处理工艺条件下的室温力学性能

    Table  3.   Mechanical properties of ZTC4 titanium alloy castings at various heat treatments

    热处理工艺Rm/MPaRp0.2/MPaA/%Z/%
    铸态9428608.012.2
    退火态9558978.813.1
    热等静压态9118519.515.3
    热等静压+退火态89283411.221.4
    下载: 导出CSV
  • [1] Tian Yongwu, Zhu Lele, Li Weidong, et al. Application and development of high temperature titanium alloys[J]. Hot Working Process, 2020,49(8):4−9. (田永武, 朱乐乐, 李伟东, 等. 高温钛合金的应用及发展[J]. 热加工工艺, 2020,49(8):4−9.
    [2] Semenova I P, Saitova L R, Raab G I, et al. Microstructural features and mechanical properties of the Ti-6Al-4V ELI alloy processed by severe plastic deformation[J]. Materials Science Forum, 2006,(1):128−131.
    [3] Ran Xing, Lv Zhigang, Cao Jian, et al. Investment casting technology for large complex titanium alloy castings[J]. Casting, 2021,70(2):8−13. (冉兴, 吕志刚, 曹建, 等. 大型复杂钛合金铸件熔模精密铸造技术[J]. 铸造, 2021,70(2):8−13.
    [4] Zhang W, Qin P, Wang Z, et al. Superior wear resistance in EBM-processed TC4 alloy compared with SLM and forged samples[J]. Materials, 2019,12(5):67−72.
    [5] Pan Bo, Huang Yichen, Li Liqun, et al. Effect of multiple laser repair on microstructure and hardness of ZTC4 titanium alloy[J]. China Laser, 2019,46(10):28−32. (潘博, 黄怡晨, 李俐群, 等. 多次激光修复对ZTC4钛合金组织与硬度的影响[J]. 中国激光, 2019,46(10):28−32.
    [6] Yin Zhongwei, Sun Yanbo, Zhang Xuhu, et al. Near net forming technology and development status of hot isostatic pressing of powder titanium alloy[J]. Material Guide, 2019,33(7):24−33. (阴中炜, 孙彦波, 张绪虎, 等. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019,33(7):24−33.
    [7] Xu Kaihua, Liu Haijun, Yan Jiangpeng, et al. Microstructure evolution of hot isostatic pressing TC4 titanium alloy during multi pass hot compression deformation[J]. Journal of Plastic Engineering, 2021,28(7):7−12. (徐凯华, 刘海军, 闫江鹏, 等. 热等静压态TC4钛合金在多道次热压缩变形中的组织演变[J]. 塑性工程学报, 2021,28(7):7−12.
    [8] Zhang Meijuan, Ying Xiwang, Nan Hai, et al. Study on interfacial fusion effect of ZTC4 / TA2 titanium alloy castings with slender holes[J]. Precision Forming Engineering, 2018,10(3):5−11. (张美娟, 郄喜望, 南海, 等. 含细长孔ZTC4/TA2钛合金铸件界面熔合效果研究[J]. 精密成形工程, 2018,10(3):5−11.
    [9] Feng Xin, Qiu Jianke, Ma Yingjie, et al. Effect of surface defects on fatigue crack propagation behavior of ZTC4 titanium alloy castings[J]. Special Casting and Nonferrous Alloys, 2019,(5):3−8. (冯新, 邱建科, 马英杰, 等. ZTC4钛合金铸件表面缺陷对疲劳裂纹扩展行为的影响[J]. 特种铸造及有色合金, 2019,(5):3−8.
    [10] Ying Xiwang, Zhang Meijuan, Zou Chunyu, et al. Mechanical properties and failure analysis of ZTC4 laser cladding repair[J]. Welding, 2020,(1):29−35,41. (郄喜望, 张美娟, 邹纯昱, 等. ZTC4激光熔覆修复力学性能及失效分析[J]. 焊接, 2020,(1):29−35,41.
    [11] Liu Jixiong, Yang Qi, Guo Zhijun, et al. Microstructure evolution of ZTC4 titanium alloy treated by hot isostatic pressing during low temperature heat treatment[J]. Journal of Material Heat Treatment, 2015,(S1):5−10. (刘继雄, 杨奇, 郭志军, 等. 热等静压处理ZTC4钛合金低温热处理过程中组织演变[J]. 材料热处理学报, 2015,(S1):5−10.
    [12] Zhang Tingjie. Electron microscopic study of phase transformation in titanium alloys (Ⅲ): Martensitic transformation in titanium alloys[J]. Rare Metal Materials and Engineering, 1989,(4):71−78. (张廷杰. 钛合金相变的电子显微镜研究(Ⅲ): 钛合金中的马氏体相变[J]. 稀有金属材料与工程, 1989,(4):71−78. doi: 10.3321/j.issn:1002-185X.1989.04.016
    [13] Wang Z, Wang X, Zhu Z. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy[J]. Journal of Alloys & Compounds, 2017,692:149−154.
    [14] Zhu Liwei, Wang Xinnan, Zhu Zhishou. Microstructure and mechanical properties of TC4-DT titanium alloy under different heat treatment processes[J]. Progress of Titanium Industry, 2012,(1):14−17. (祝力伟, 王新南, 朱知寿. 不同热处理工艺下TC4-DT钛合金的显微组织及力学性能[J]. 钛工业进展, 2012,(1):14−17.
    [15] Tian Chenchao, Gao Yang, Zhang Juan, et al. Comparative analysis of fatigue crack growth rates of TC4-DT and TC21 titanium alloys[J]. Welded Pipe, 2019,42(11):31−34. (田晨超, 高阳, 张娟, 等. TC4-DT及TC21钛合金疲劳裂纹扩展速率的对比分析[J]. 焊管, 2019,42(11):31−34.
    [16] Wang B H, Cheng L, Bao X C. Effect of heat treatment on very high cycle fatigue properties of TC4[J]. Key Engineering Materials, 2021,881:3−11. doi: 10.4028/www.scientific.net/KEM.881.3
    [17] Liu G, Huang C, Sun S, et al. Effect of microstructure on high-speed cutting modified anti-fatigue performance of Incoloy A286 and titanium alloy TC17[J]. The International Journal of Advanced Manufacturing Technology, 2021,113(3):855−866.
    [18] Wang Xinnan, Zhu Zhishou, Shang Guoqiang, et al. Effect of heat treatment process on mechanical properties of Ti-6Al-4V ELI alloy thick section forgings[J]. Progress of Titanium Industry, 2019,(2):29−33. (王新南, 朱知寿, 商国强, 等. 热处理工艺对Ti-6Al-4V ELI合金厚截面锻件力学性能的影响[J]. 钛工业进展, 2019,(2):29−33.
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  34
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-16
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回