留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒-氮共掺杂含钛高炉渣光催化优化研究

霍红英 同艳维

霍红英, 同艳维. 钒-氮共掺杂含钛高炉渣光催化优化研究[J]. 钢铁钒钛, 2022, 43(1): 74-79. doi: 10.7513/j.issn.1004-7638.2022.01.011
引用本文: 霍红英, 同艳维. 钒-氮共掺杂含钛高炉渣光催化优化研究[J]. 钢铁钒钛, 2022, 43(1): 74-79. doi: 10.7513/j.issn.1004-7638.2022.01.011
Huo Hongying, Tong Yanwei. Photocatalytic process optimization study of vanadium and nitrogen co-doped Ti-bearing blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 74-79. doi: 10.7513/j.issn.1004-7638.2022.01.011
Citation: Huo Hongying, Tong Yanwei. Photocatalytic process optimization study of vanadium and nitrogen co-doped Ti-bearing blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 74-79. doi: 10.7513/j.issn.1004-7638.2022.01.011

钒-氮共掺杂含钛高炉渣光催化优化研究

doi: 10.7513/j.issn.1004-7638.2022.01.011
基金项目: 攀枝花市综合资助项目(20180816);四川省大学生创新创业训练计划项目(S201911360037);四川省钒钛材料工程技术研究中心开放基金项目(2020-2FTGC-YB-02)
详细信息
    作者简介:

    霍红英(1984—),女,工学硕士,副教授,主要从事钒钛新材料制备、材料分析及教学工作,E-mail:258116574@qq.com

  • 中图分类号: X757,TQ426

Photocatalytic process optimization study of vanadium and nitrogen co-doped Ti-bearing blast furnace slag

  • 摘要: 为了实现含钛高炉渣的高附加值、合理的综合利用问题,利用其含TiO2可制备光催化剂的特点,以攀钢含钛高炉渣为原料,以硝酸铵为氮源,以偏钒酸铵为钒源,采用高温固相烧结法掺入钒源,液相法掺入氮源的分步掺杂的方式制备了钒-氮共掺杂含钛高炉渣光催化材料,在紫外光下,以亚甲基蓝为模拟污染物,选取掺杂量、煅烧温度及煅烧时间为影响因素,评价其光催化活性;并用SEM、XRD手段对催化剂进行了表征。结果表明:钒、氮共掺杂对高炉渣的物相晶型影响较小,但能够增大其比表面积,提高其光催化活性;在煅烧温度300 ℃、N-Ti摩尔掺杂比30%、偏钒酸铵-TiO2质量百分比45%、煅烧时间2 h时,制备的钒-氮共掺杂含钛高炉渣光催化剂降解率达到97.0%,比未掺杂之前提高了47.0%。
  • 图  1  高炉渣及光催化剂的SEM形貌

    Figure  1.  SEM patterns of the blast furnace slag and photocatalysts

    图  2  高炉渣及光催化剂XRD谱

    Figure  2.  XRD patterns of the blast furnace slag and photocatalysts

    图  3  煅烧温度对光催化剂降解效率的影响

    Figure  3.  Effect of calcination temperature on the degradation efficiency of the photocatalyst

    图  4  不同煅烧温度下降解率随时间的变化

    Figure  4.  Variation of degradation rate with time at different calcination temperature

    图  5  掺杂量对光催化剂降解效率的影响

    Figure  5.  Effect of doping ratio on degradation efficiency of the photocatalyst

    图  6  不同掺杂量下降解率随时间的变化

    Figure  6.  The change of degradation rate with time in different doping amount

    图  7  煅烧时间对光催化剂降解效率的影响

    Figure  7.  Effect of calcination time on degradation efficiency of the photocatalyst

    图  8  不同煅烧时间下降解率随时间的变化

    Figure  8.  The change of degradation rate with different calcination times

    表  1  含钛高炉渣的主要成分

    Table  1.   Main compositions of the Ti-bearing blast furnace slag %

    TiO2Fe2O3SiO2MgOAl2O3CaOV2O5F
    23.162.6424.017.4713.4927.190.820.12
    下载: 导出CSV
  • [1] Huo Hongying, Li Ruiping. Research process on photocatalytic materials of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2020,1(4):36−41. (霍红英, 李瑞萍. 高钛型高炉渣光催化材料研究进展[J]. 矿产综合利用, 2020,1(4):36−41. doi: 10.3969/j.issn.1000-6532.2020.04.006
    [2] Huo Hongying, Zou Min. Reparation and performance optimization of Co-doped high-titanium blast furnace slag as photocatalytic material[J]. Iron Steel Vanadium Titanium, 2021,42(1):65−69. (霍红英, 邹敏. 钴掺杂高钛型高炉渣光催化材料制备及性能优化[J]. 钢铁钒钛, 2021,42(1):65−69.
    [3] 施丽丽. 含钛高炉渣物理化学特性的实验研究[D]. 贵阳: 贵州大学, 2009.

    Shi Lili. Experimental study on physical chemistry characteristics of titanium-bearing blast furnace slag[D]. Guiyang: Guizhou University, 2009.
    [4] Li Yang, Yue Yi, Que Zaiqing, et al. Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag[J]. International Journal of Minerals Metallurgy and Materials, 2013,20(10):1012−1020. doi: 10.1007/s12613-013-0828-y
    [5] Yang He, Xue Xiangxin, Zuo Liang, et al. Photocatalytic degradation of blue with blast furnace slag containing titania[J]. The Chinese Journal of Process Engineering, 2004,(3):265−268. (杨合, 薛向欣, 左良, 等. 含钛高炉渣催化剂光催化降解亚甲基蓝[J]. 过程工程学报, 2004,(3):265−268. doi: 10.3321/j.issn:1009-606X.2004.03.014
    [6] Ma Xingguan, Ma Zhixiao, Yang He, et al. Experimental study on the degradation of the furfural waste water with titaniferous blast furmace slag[J]. Environmental Protection Science, 2009,35(5):15. (马兴冠, 马志孝, 杨合, 等. 含钛高炉渣光催化降解糠醛废水[J]. 环境保护科学, 2009,35(5):15. doi: 10.3969/j.issn.1004-6216.2009.05.005
    [7] Higanshimoto S, Tanihata W, Nakagawa, et al. Effective photocatalytic decomposition of VOC under visible light irradiation on N-doped TiO2 modified by vanadium species[J]. Applied Catalysis A:General, 2008,340(1):98−104. doi: 10.1016/j.apcata.2008.02.003
    [8] Liu Jianwan, Han Rui, Zhao Yi. Enhanced photoactivity of V-N codoped TiO2 derived from a two-step hydrothermal procedure for the degradation of PCP-Na under visible light irradiation[J]. Journal of Physics and Chemistry C, 2011,115:4507−4515. doi: 10.1021/jp110814b
    [9] Li Qi, Han Lijuan, Liu Gang, et al. Synthesis, characterization and degradation performance of V-N-TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry, 2013,32(6):1073−1080. (李琪, 韩立娟, 刘刚, 等. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学, 2013,32(6):1073−1080.
    [10] Wang Hui, Xue Xiangxin, Yang He, et al. Study of preparation of V5+ doped titanium-bearing blast furnace slag and its antibacterial capability[J]. Iron Steel Vanadium Titanium, 2009,30(4):6−10. (王辉, 薛向欣, 杨合, 等. V5+掺杂含钛高炉渣光催化抗菌材料的制备及抗菌性能研究[J]. 钢铁钒钛, 2009,30(4):6−10.
    [11] Zhou Mi, Yang He, Piao Erjun, et al. Effect of rare earth metal doping on photocatalytic performance of titania-bearing blast furnace slag[J]. Iron and Steel, 2010,45(10):90−94. (周密, 杨合, 卜二军, 等. 掺杂稀土金属对含钛高炉渣光催化性能影响[J]. 钢铁, 2010,45(10):90−94.
    [12] Zhang Shiqiu, Wang Weiqing. Manganese nodilied Ti-bearing blast furnace slag type photocatalyst degrade Cr6+ in waste water[J]. Metal Mine, 2017,(5):181−184. (张士秋, 王维清. 锰改性含钛高炉渣光催化剂降解废水中的Cr6+[J]. 金属矿山, 2017,(5):181−184. doi: 10.3969/j.issn.1001-1250.2017.05.035
    [13] 中国国家标准化管理委员会. GB/T 23762-2009 光催化材料水溶液体系净化测试方法[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of China. GB/T 23762-2009 Test method for purification of aqueous solution systems of photocatalytic materials[S]. Beijing: China Standard Press, 2010.
    [14] 刘畅. 氮掺杂含钛高炉渣处理Cr(Ⅵ)废水的研究[D]. 沈阳: 东北大学, 2018.

    Liu Chang. Study on treatment of Cr(Ⅵ) wastewater by nitrogen-doped titanium-bearing blast furnace slag[D]. Shenyang: Northeastern University, 2018.
    [15] Chu Shaobin, Zhou Lizhen, Wang Zhongmin. A study of thermal decompositon of ammonium metavanadate[J]. The Chinese Journal of Process Engineering, 1991,3(1):69−70. (储绍彬, 周丽珍, 王忠敏. 偏钒酸铵热分解研究[J]. 过程工程学报, 1991,3(1):69−70. doi: 10.3321/j.issn:1009-606X.1991.01.011
    [16] Huo Hongying. Optimization of photocatalytic performance of ammonium metavanadate doped high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2020,(6):43−47. (霍红英. 偏钒酸铵掺杂高钛型高炉渣的光催化性能优化[J]. 矿产综合利用, 2020,(6):43−47. doi: 10.3969/j.issn.1000-6532.2020.06.008
    [17] Zhou Caixia. Study on preparation and catalytic kinetics of TiO2 photocatalyst[J]. Chemical Enterprise Management, 2017,10(26):73−75. (周彩霞. TiO2光催化材料的制备及催化动力学研究[J]. 化工管理, 2017,10(26):73−75. doi: 10.3969/j.issn.1008-4800.2017.26.066
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  17
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回