Photocatalytic process optimization study of vanadium and nitrogen co-doped Ti-bearing blast furnace slag
-
摘要: 为了实现含钛高炉渣的高附加值、合理的综合利用问题,利用其含TiO2可制备光催化剂的特点,以攀钢含钛高炉渣为原料,以硝酸铵为氮源,以偏钒酸铵为钒源,采用高温固相烧结法掺入钒源,液相法掺入氮源的分步掺杂的方式制备了钒-氮共掺杂含钛高炉渣光催化材料,在紫外光下,以亚甲基蓝为模拟污染物,选取掺杂量、煅烧温度及煅烧时间为影响因素,评价其光催化活性;并用SEM、XRD手段对催化剂进行了表征。结果表明:钒、氮共掺杂对高炉渣的物相晶型影响较小,但能够增大其比表面积,提高其光催化活性;在煅烧温度300 ℃、N-Ti摩尔掺杂比30%、偏钒酸铵-TiO2质量百分比45%、煅烧时间2 h时,制备的钒-氮共掺杂含钛高炉渣光催化剂降解率达到97.0%,比未掺杂之前提高了47.0%。Abstract: The characteristics of the photocatalysts can be prepared using Ti-bearing blast furnace slag containing TiO2 to realize Ti-bearing blast furnace slag′s high added value and reasonable comprehensive utilization. Photocatalytic material derived from vanadium and nitrogen co-doped Ti-bearing blast furnace slag was produced by two-step doping approach (high-temperature solid-phase sintering method was used to adulterate vanadium source and liquid-phase method was used to adulterate nitrogen source). The raw material was Ti-bearing blast furnace slag produced from Pangang. At the same time, ammonium nitrate and ammonium metavanadate were carried out as the nitrogen source and the vanadium source, respectively. The effects of calcination temperature, doping amount and calcination time on the degradation rate of simulated pollutant methylene blue solution were investigated under ultraviolet light, and SEM and XRD characterized the photocatalytic activity. The results show that the co-doping of vanadium and nitrogen has a negligible effect on the crystal structure of blast furnace slag but can increase the specific surface area of blast furnace slag and improve its photocatalytic activity. The N/Ti molar ratio is 30% and the mass percentage of ammonium metavanadate TiO2 was 45% when the calcination temperature was 300 ℃. In addition, the degradation rate of the prepared vanadium and nitrogen co-doped Ti-bearing blast furnace slag photocatalyst reached 97.0% when the calcination time was 2 h, which was 47.0% higher than that before doping.
-
表 1 含钛高炉渣的主要成分
Table 1. Main compositions of the Ti-bearing blast furnace slag
% TiO2 Fe2O3 SiO2 MgO Al2O3 CaO V2O5 F 23.16 2.64 24.01 7.47 13.49 27.19 0.82 0.12 -
[1] Huo Hongying, Li Ruiping. Research process on photocatalytic materials of high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2020,1(4):36−41. (霍红英, 李瑞萍. 高钛型高炉渣光催化材料研究进展[J]. 矿产综合利用, 2020,1(4):36−41. doi: 10.3969/j.issn.1000-6532.2020.04.006 [2] Huo Hongying, Zou Min. Reparation and performance optimization of Co-doped high-titanium blast furnace slag as photocatalytic material[J]. Iron Steel Vanadium Titanium, 2021,42(1):65−69. (霍红英, 邹敏. 钴掺杂高钛型高炉渣光催化材料制备及性能优化[J]. 钢铁钒钛, 2021,42(1):65−69. [3] 施丽丽. 含钛高炉渣物理化学特性的实验研究[D]. 贵阳: 贵州大学, 2009.Shi Lili. Experimental study on physical chemistry characteristics of titanium-bearing blast furnace slag[D]. Guiyang: Guizhou University, 2009. [4] Li Yang, Yue Yi, Que Zaiqing, et al. Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag[J]. International Journal of Minerals Metallurgy and Materials, 2013,20(10):1012−1020. doi: 10.1007/s12613-013-0828-y [5] Yang He, Xue Xiangxin, Zuo Liang, et al. Photocatalytic degradation of blue with blast furnace slag containing titania[J]. The Chinese Journal of Process Engineering, 2004,(3):265−268. (杨合, 薛向欣, 左良, 等. 含钛高炉渣催化剂光催化降解亚甲基蓝[J]. 过程工程学报, 2004,(3):265−268. doi: 10.3321/j.issn:1009-606X.2004.03.014 [6] Ma Xingguan, Ma Zhixiao, Yang He, et al. Experimental study on the degradation of the furfural waste water with titaniferous blast furmace slag[J]. Environmental Protection Science, 2009,35(5):15. (马兴冠, 马志孝, 杨合, 等. 含钛高炉渣光催化降解糠醛废水[J]. 环境保护科学, 2009,35(5):15. doi: 10.3969/j.issn.1004-6216.2009.05.005 [7] Higanshimoto S, Tanihata W, Nakagawa, et al. Effective photocatalytic decomposition of VOC under visible light irradiation on N-doped TiO2 modified by vanadium species[J]. Applied Catalysis A:General, 2008,340(1):98−104. doi: 10.1016/j.apcata.2008.02.003 [8] Liu Jianwan, Han Rui, Zhao Yi. Enhanced photoactivity of V-N codoped TiO2 derived from a two-step hydrothermal procedure for the degradation of PCP-Na under visible light irradiation[J]. Journal of Physics and Chemistry C, 2011,115:4507−4515. doi: 10.1021/jp110814b [9] Li Qi, Han Lijuan, Liu Gang, et al. Synthesis, characterization and degradation performance of V-N-TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry, 2013,32(6):1073−1080. (李琪, 韩立娟, 刘刚, 等. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学, 2013,32(6):1073−1080. [10] Wang Hui, Xue Xiangxin, Yang He, et al. Study of preparation of V5+ doped titanium-bearing blast furnace slag and its antibacterial capability[J]. Iron Steel Vanadium Titanium, 2009,30(4):6−10. (王辉, 薛向欣, 杨合, 等. V5+掺杂含钛高炉渣光催化抗菌材料的制备及抗菌性能研究[J]. 钢铁钒钛, 2009,30(4):6−10. [11] Zhou Mi, Yang He, Piao Erjun, et al. Effect of rare earth metal doping on photocatalytic performance of titania-bearing blast furnace slag[J]. Iron and Steel, 2010,45(10):90−94. (周密, 杨合, 卜二军, 等. 掺杂稀土金属对含钛高炉渣光催化性能影响[J]. 钢铁, 2010,45(10):90−94. [12] Zhang Shiqiu, Wang Weiqing. Manganese nodilied Ti-bearing blast furnace slag type photocatalyst degrade Cr6+ in waste water[J]. Metal Mine, 2017,(5):181−184. (张士秋, 王维清. 锰改性含钛高炉渣光催化剂降解废水中的Cr6+[J]. 金属矿山, 2017,(5):181−184. doi: 10.3969/j.issn.1001-1250.2017.05.035 [13] 中国国家标准化管理委员会. GB/T 23762-2009 光催化材料水溶液体系净化测试方法[S]. 北京: 中国标准出版社, 2010.Standardization Administration of China. GB/T 23762-2009 Test method for purification of aqueous solution systems of photocatalytic materials[S]. Beijing: China Standard Press, 2010. [14] 刘畅. 氮掺杂含钛高炉渣处理Cr(Ⅵ)废水的研究[D]. 沈阳: 东北大学, 2018.Liu Chang. Study on treatment of Cr(Ⅵ) wastewater by nitrogen-doped titanium-bearing blast furnace slag[D]. Shenyang: Northeastern University, 2018. [15] Chu Shaobin, Zhou Lizhen, Wang Zhongmin. A study of thermal decompositon of ammonium metavanadate[J]. The Chinese Journal of Process Engineering, 1991,3(1):69−70. (储绍彬, 周丽珍, 王忠敏. 偏钒酸铵热分解研究[J]. 过程工程学报, 1991,3(1):69−70. doi: 10.3321/j.issn:1009-606X.1991.01.011 [16] Huo Hongying. Optimization of photocatalytic performance of ammonium metavanadate doped high titanium blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2020,(6):43−47. (霍红英. 偏钒酸铵掺杂高钛型高炉渣的光催化性能优化[J]. 矿产综合利用, 2020,(6):43−47. doi: 10.3969/j.issn.1000-6532.2020.06.008 [17] Zhou Caixia. Study on preparation and catalytic kinetics of TiO2 photocatalyst[J]. Chemical Enterprise Management, 2017,10(26):73−75. (周彩霞. TiO2光催化材料的制备及催化动力学研究[J]. 化工管理, 2017,10(26):73−75. doi: 10.3969/j.issn.1008-4800.2017.26.066 -