留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3+/GO-TiO2薄膜光催化降解饮用水中消毒副产物TCM的研究

李雨霏 刘昱

李雨霏, 刘昱. Fe3+/GO-TiO2薄膜光催化降解饮用水中消毒副产物TCM的研究[J]. 钢铁钒钛, 2022, 43(1): 85-90. doi: 10.7513/j.issn.1004-7638.2022.01.013
引用本文: 李雨霏, 刘昱. Fe3+/GO-TiO2薄膜光催化降解饮用水中消毒副产物TCM的研究[J]. 钢铁钒钛, 2022, 43(1): 85-90. doi: 10.7513/j.issn.1004-7638.2022.01.013
Li Yufei, Liu Yu. Study on the photocatalytic degradation of disinfection by-product TCM in drinking water by Fe3+/GO-TiO2 thin films[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 85-90. doi: 10.7513/j.issn.1004-7638.2022.01.013
Citation: Li Yufei, Liu Yu. Study on the photocatalytic degradation of disinfection by-product TCM in drinking water by Fe3+/GO-TiO2 thin films[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 85-90. doi: 10.7513/j.issn.1004-7638.2022.01.013

Fe3+/GO-TiO2薄膜光催化降解饮用水中消毒副产物TCM的研究

doi: 10.7513/j.issn.1004-7638.2022.01.013
基金项目: 哈尔滨市科技创新基金(2017RAQXJ229)。
详细信息
    作者简介:

    李雨霏(1973—),女,吉林长春人,副教授,主要研究方向为水处理技术、水污染物的光催化降解,E-mail:liyufei3359@ 163.com

    通讯作者:

    刘昱(1997—),男,河北唐山人,在读硕士研究生,研究方向为水污染物的光催化降解,E-mail:infact225@qq.com

  • 中图分类号: TF823,TQ426

Study on the photocatalytic degradation of disinfection by-product TCM in drinking water by Fe3+/GO-TiO2 thin films

  • 摘要: 通过溶胶凝胶法在玻璃基片上制得不同配比Fe3+掺杂量的GO-TiO2薄膜,对样品采用X-射线衍射和紫外可见光谱分析进行表征。在功率20 W,波长254 nm紫外灯下照射210 min光催化降解三氯甲烷(TCM),考察Fe3+掺杂比例、薄膜焙烧温度、薄膜层数及薄膜复用次数四方面对降解率的影响。结果表明,制得的样品均为锐钛矿型,Fe3+的掺杂使晶体粒径缩小且发生了红移现象。对TCM的降解效果随着Fe3+掺杂比例的增大而提高,400 ℃下焙烧形成的薄膜最佳。无论Fe3+掺杂与否,多次覆膜均能提高TCM降解率。各个薄膜在重复使用四次后降解能力趋于稳定。
  • 图  1  掺杂不同比例Fe3+的GO-TiO2粉末的XRD图谱

    Figure  1.  XRD patterns of GO-TiO2 samples doped with different ratios of Fe3+

    图  2  不同比例Fe3+掺杂GO-TiO2样品的紫外可见漫反射光谱

    Figure  2.  UV-Vis DRS of Fe3+ doped GO-TiO2 samples in different ratios

    图  3  不同Fe3+掺杂比例和薄膜焙烧温度对TCM降解率的影响

    Figure  3.  Effects of different Fe3+ doping ratios and calcination temperatures on degradation rate of TCM

    图  4  不同层数薄膜降解TCM效果的对比

    Figure  4.  Comparison of TCM degradation results of films with different layers

    表  1  掺杂不同比例Fe3+的GO-TiO2粉末的平均晶粒尺寸

    Table  1.   Average grain sizes of GO-TiO2 samples doped with different ratios of Fe3+

    Fe3+掺杂比例/%平均粒径/nm
    0.024.5
    0.513.5
    1.012.8
    1.512.5
    2.012.3
    2.511.2
    下载: 导出CSV

    表  2  薄膜复用降解TCM效果的对比

    Table  2.   Effects of reuse of various films on TCM degradation %

    Fe3+掺杂比例首次降解
    降解率
    二次降解
    降解率
    三次降解
    降解率
    四次降解
    降解率
    五次降解
    降解率
    0.0 18.31 14.40 10.42 8.29 8.54
    0.5 33.3 29.37 24.2 23.43 21.7
    1.0 35.78 30.13 24.75 22.33 21.78
    1.5 38.02 34.15 30.08 29.1 28.32
    2.0 38.91 35.94 31.73 30.12 28.89
    2.5 39.63 36.33 32.8 31.97 31.76
    下载: 导出CSV
  • [1] Tong Zhongchen, Yuan Jian, Yuan Hongying, et al. Advances in research of trihalomethanes and haloacetic acids of chlorination disinfection by-products in drinking water treatment[J]. Water Purification Technology, 2012,31(2):6−11. (仝重臣, 员建, 苑宏英, 等. 饮用水处理中氯化消毒副产物三卤甲烷和卤代乙酸研究进展[J]. 净水技术, 2012,31(2):6−11. doi: 10.3969/j.issn.1009-0177.2012.02.002
    [2] Rook J J. Formation of haloform during chlorination of natural waters[J]. Water Treatm Exam, 1974,23(2):234−243.
    [3] Bellar T A, Lichtenberg J J, Kroner R C. The occurrence of organohalides in chlorinated drinking waters[J]. Journal American Water Works Association, 1974,66(12):703−706. doi: 10.1002/j.1551-8833.1974.tb02129.x
    [4] Chen Zhirong, Pei Xinrong, Zhang Fenglan, et al. Research progress and risk assessment of the toxicology of chloroform[J]. Chinese Pharmaceutical Affairs, 2014,28(2):190−194. (陈志蓉, 裴新荣, 张凤兰, 等. 氯仿的毒理学研究现状及氯仿残留的风险性评估[J]. 中国药事, 2014,28(2):190−194.
    [5] Hu Yanhua, Xu Couyou, Huang Qixiang, et al. Research progress of chlorination disinfection by-products in drinking water on human health and technologies for treatment of drinking water[J]. Guangdong Chemical Industry, 2010,37(4):16−17. (胡衍华, 徐凑友, 黄其祥, 等. 饮用水氯化消毒副产物对人体健康的影响及处理技术研究进展[J]. 广东化工, 2010,37(4):16−17. doi: 10.3969/j.issn.1007-1865.2010.04.008
    [6] Han Yaoxia, Zhang Yu, Li Jiaona. Simply analyzing the controlling of the accessory substance from chlorine disinfect in drinking water[J]. Shanxi Architecture, 2006,(1):189−190. (韩耀霞, 张瑜, 李娇娜. 浅析饮用水中氯化消毒副产物的控制[J]. 山西建筑, 2006,(1):189−190. doi: 10.3969/j.issn.1009-6825.2006.01.123
    [7] Guo Qing, Zhou Chuanyao, Ma Zhibo, et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges[J]. Advanced Materials, 2019,31(50):1901997. doi: 10.1002/adma.201901997
    [8] Zhu Jiaxin, Xiong Yuhua, Guo Rui. Research progress in modification of TiO2 photocatalyst[J]. Inorganic Chemicals Industry, 2020,52(3):23−27,54. (朱佳新, 熊裕华, 郭锐. 二氧化钛光催化剂改性研究进展[J]. 无机盐工业, 2020,52(3):23−27,54. doi: 10.11962/1006-4990.2019-0245
    [9] 李宁, 张伟, 李贵贤, 等. TiO2光催化剂的研究进展[J/OL]. 精细化工: 1-11[2021-09-25]. https://doi.org/10.13550/j.jxhg.20210582.

    Li Ning, Zhang Wei, Li Guixian, et al. Research progress of TiO2 photocatalysts[J/OL]. Fine Chemicals: 1-11[2021-09-25]. https://doi.org/10.13550/j.jxhg.20210582.
    [10] Wang Xian, Gong Zheng, Yu Qi, et al. Application of modified TiO2 photocatalysis technology in black and odorous water body remediation[J]. Water Purification Technology, 2021,40(9):104−112,118. (汪娴, 龚正, 于琦, 等. TiO2光催化剂改性技术在黑臭水体治理中的应用[J]. 净水技术, 2021,40(9):104−112,118.
    [11] He Yanan, Jia Ying, Zhang Yongyong, et al. Study of TiO2-graphene oxide by sol-gel method using as a photocatalyst[J]. Applied Chemical Industry, 2015,44(3):506−509,514. (贺亚南, 贾瑛, 张永勇, 等. 溶胶-凝胶法制备TiO2-GO光催化剂的研究[J]. 应用化工, 2015,44(3):506−509,514.
    [12] 刘美玲. 碳纤维负载二氧化钛光催化材料的制备及其可见光活性研究[D]. 长春: 长春工业大学, 2016.

    Liu Meiling. Preparation of titania photocatalyst supported on carbon fiber and its photocatalytic activity under visible light[D]. Changchun : Changchun University of Technology, 2016.
    [13] Zhang Jianwei, Yuan Peng, Wang Jianqiao, et al. Preparation of Ce doped CNTs-TiO2 photocatalyst and its NO oxidation performance[J]. Chinese Journal of Environmental Engineering, 2020,14(7):1852−1861. (张建伟, 苑鹏, 王建桥, 等. Ce掺杂的CNTs-TiO2光催化剂制备及其NO氧化性能[J]. 环境工程学报, 2020,14(7):1852−1861. doi: 10.12030/j.cjee.201909119
    [14] 王冀霞. 石墨烯和银掺杂二氧化钛复合膜的光催化性能研究[D]. 秦皇岛: 燕山大学, 2016.

    Wang Jixia. Study on photocatalytic properties of Ag-TiO2/Graphene composite film[D]. Qinghuangdao: Yanshan University, 2016.
    [15] GB/T 5750.8—2006. 生活饮用水标准检验方法-有机物指标[S].

    GB/T 5750.8—2006. Standard examination methods for drinking water-organic parameters[S].
    [16] Uwe Holzwarth, Neil Gibson. The scherrer equation versus the 'Debye-Scherrer equation'[J]. Nature Nanotechnology, 2011,6(9):534−534. doi: 10.1038/nnano.2011.145
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  41
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回