留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声波增强炼钢渣中钙的浸出用于CO2矿物封存

刘建平 陈林 宇文超 刘秉国 郭胜惠

刘建平, 陈林, 宇文超, 刘秉国, 郭胜惠. 超声波增强炼钢渣中钙的浸出用于CO2矿物封存[J]. 钢铁钒钛, 2022, 43(1): 91-98. doi: 10.7513/j.issn.1004-7638.2022.01.014
引用本文: 刘建平, 陈林, 宇文超, 刘秉国, 郭胜惠. 超声波增强炼钢渣中钙的浸出用于CO2矿物封存[J]. 钢铁钒钛, 2022, 43(1): 91-98. doi: 10.7513/j.issn.1004-7638.2022.01.014
Liu Jianping, Chen Lin, Yuwen Chao, Liu Bingguo, Guo Shenghui. Enhancement of leaching of Ca from steelmaking slag by ultrasonic for CO2 mineral sequestration[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 91-98. doi: 10.7513/j.issn.1004-7638.2022.01.014
Citation: Liu Jianping, Chen Lin, Yuwen Chao, Liu Bingguo, Guo Shenghui. Enhancement of leaching of Ca from steelmaking slag by ultrasonic for CO2 mineral sequestration[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 91-98. doi: 10.7513/j.issn.1004-7638.2022.01.014

超声波增强炼钢渣中钙的浸出用于CO2矿物封存

doi: 10.7513/j.issn.1004-7638.2022.01.014
基金项目: 国家自然科学基金项目(编号:51961020);国家重点研发计划(编号:2018YFC1900500)。
详细信息
    作者简介:

    刘建平(1982—),男,江西广昌人,博士在读,高级工程师,主要从事冶金固废资源的综合利用,E-mail:liujianping312@163.com

    通讯作者:

    刘秉国(1973—),男,甘肃张掖人,博士,教授,主要从事微波冶金新技术和新工艺的研究,E-mail:bingoliu@126.com

  • 中图分类号: X757

Enhancement of leaching of Ca from steelmaking slag by ultrasonic for CO2 mineral sequestration

  • 摘要: 炼钢渣是一种含有大量硅酸钙的碱性废物,可用于钢铁企业捕获CO2并合成高附加值的CaCO3。在此研究了在乙酸溶液中超声对炼钢渣中Ca的浸出率和选择性提取率的影响。试验结果表明,超声功率、液固比和乙酸溶液的初始浓度与Ca的浸出率呈正相关,但炼钢渣的粒度和温度与Ca的浸出率呈负相关。温度和乙酸溶液的初始浓度与Ca的选择性提取率呈负相关。此外,超声功率和固液比对Ca的选择性提取率影响不大,但增加超声功率和固液比会增加非钙杂质元素的浸出率。在0.5 mol/L乙酸水溶液中提取0.96 μm以下炼钢渣中的钙,反应40 min后Ca的选择性提取率高达96.7%。在浸出过程中,超声可以有效打破和去除炼钢渣颗粒表面残留的二氧化硅形成的多孔钝化层,提高Ca的浸出率。
  • 图  1  不同粒径钢渣的XRD图谱

    Figure  1.  XRD patterns of steel slag with different particle sizes

    图  2  不同因素对钢渣中钙浸出的影响

    Figure  2.  Effect of different factors on calcium leaching in steel slag

    图  3  不同因素对钢渣中钙浸出的影响

    Figure  3.  Effect of different factors on calcium leaching in steel slag

    图  4  不同因素对钢渣乙酸水溶液中钙、铁、镁选择性浸出率的影响

    (a)超声波功率;(b)钢渣粒度;(c)固液比;(d)反应温度;(e)乙酸水溶液初始浓度

    Figure  4.  Effect of different factors on selective leaching rate of calcium, iron and magnesium in acetic acid aqueous solution of steel slag

    图  5  不同条件浸出渣的SEM形貌

    初始乙酸浓度=0.5 mol/L,温度=40 ℃, 时间=40 min(a)原料(粒度=180 ~ 380 μm);(b)机械搅拌(粒度=180 ~ 380 μm);(c)超声(超声功率=100 W, 粒度=180 ~ 380 μm);(d)超声(超声功率=200 W, 粒度=180 ~ 380 μm);(e)超声(超声功率=200 W, 粒度=0 ~ 96 μm);(f)超声(超声功率=200 W, 粒度=96 ~ 180 μm)

    Figure  5.  SEM morphology of leaching residue under different conditions

    表  1  炼钢渣的XRF分析化学成分a

    Table  1.   Chemical composition of the steelmaking slags by XRF-analysisa

    编号粒度/μmw/%
    OCaFeSiMgMnTiCPV
    试样1180 ~ 38039.1828.8914.333.873.323.182.071.941.121.01
    试样296 ~ 18037.2028.7615.573.983.783.721.911.701.291.03
    试样30 ~ 9637.5728.6415.453.933.743.671.921.711.281.00
    a只显示含量高于1%的元素。
    下载: 导出CSV
  • [1] Metz B, Davidson O, Coninck H, et al. Special report on carbon dioxide capture and storage[R]. UK: Cambridge University Press, Cambridge, 2005.
    [2] Lackner K S. Carbonate chemistry for sequestering fossil carbon[J]. Social Science Electronic Publishing, 2002,27(1):193−232.
    [3] Huijgen W J J, Comans R N J. Carbon dioxide sequestration by mineral carbonation, literature review[R]. Energy Research Centre of the Netherlands ECN. 2003.
    [4] Huijgen W J J, Comans R N J. Carbon dioxide sequestration by mineral carbonation: literature review update 2003-2004[R]. Energy Research Centre of the Netherlands ECN. 2005.
    [5] Wang X, Maroto-Valer M M. Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts[J]. Chem. Sus. Chem., 2011,4(9):1291−1300. doi: 10.1002/cssc.201000441
    [6] Werner M, Verduyn M, Mossel G, et al. Direct flue gas CO2 mineralization using activated serpentine: Exploring the reaction kinetics by experiments and population balance modelling[J]. Energy Procedia, 2011,4:2043−2049. doi: 10.1016/j.egypro.2011.02.086
    [7] Teir S, Kettle J, Harlin A, et al. Production of silica and calcium carbonate particles from silica minerals for inkjet paper coating and filler purposes[C]//ACEME10. 2010: 63-74.
    [8] Teir S, Eloneva S, Fogelholm C J, et al. Fixation of carbon dioxide by producing hydromagnesite from serpentinite[J]. Applied Energy, 2009,86(2):214−218. doi: 10.1016/j.apenergy.2008.03.013
    [9] Krevor S C, Lackner K S. Enhancing process kinetics for mineral carbon sequestration[J]. Energy Procedia, 2009,1(1):4867−4871. doi: 10.1016/j.egypro.2009.02.315
    [10] Zevenhoven R, Teir S, Eloneva S. Heat optimisation of a staged gas–solid mineral carbonation process for long-term CO2 storage[J]. Energy, 2008,33(2):362−370. doi: 10.1016/j.energy.2007.11.005
    [11] Boschi C, Dini A, Dallai L, et al. Enhanced CO2 mineral sequestration by cyclic hydraulic fracturing and Si-rich infiltration into serpentinites at Malentrata[J]. Chem. Geol., 2009,265(1-2):209−226. doi: 10.1016/j.chemgeo.2009.03.016
    [12] Fagerlund J, Teir S, Nduagu E, et al. Carbonation of magnesium silicate mineral using a pressurised gas/solid process[J]. Energy Procedia, 2009,1(1):4907−4914. doi: 10.1016/j.egypro.2009.02.321
    [13] Daval D, Martinez I, Corvisier J, et al. Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modelling[J]. Chem. Geol., 2009,265(1-2):63−78. doi: 10.1016/j.chemgeo.2009.01.022
    [14] Baldyga J, Henczka M, Sokolnicka K. Utilization of carbon dioxide by chemically accelerated mineral carbonation[J]. Mater. Lett., 2010,64(6):702−704. doi: 10.1016/j.matlet.2009.12.043
    [15] Ghoorah M, Dlugogorski B Z, Balucan R D, et al. Selection of acid for weak acid processing of wollastonite for mineralization of CO2[J]. Fuel, 2014,122:277−286. doi: 10.1016/j.fuel.2014.01.015
    [16] Machenbach I, Brandvoll O, Wihle J, et al. Development of an industrial process concept for CO2 sequestration by mineral carbonation[C]//Proceedings of the 2nd International Conference on Accelerated Carbonation for Environmental an Materials Engineering. 2008: 459-461.
    [17] Dufaud F, Martinez I, Shilobreeva S. Experimental study of Mg-rich silicates carbonation at 400 and 500 ℃ and 1 kbar[J]. Chemical Geology, 2009,265(1-2):79−87. doi: 10.1016/j.chemgeo.2009.01.026
    [18] Haug T A, Johansen H, Brandvoll O. The way forward for mineral carbonation—importance of collaboration, experiments and modelling[C]// Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering. 2010: 113–119.
    [19] Zhao H, Li Bao, Wang W, et al. Experimental study of enhanced phosphogypsum carbonation with ammonia under increased CO2 pressure[J]. Journal of CO2 Utilization, 2015,11:10−19. doi: 10.1016/j.jcou.2014.11.004
    [20] Said A, Mattila H P, Järvinen M, et al. Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2[J]. Applied Energy, 2013,112(4):765−771.
    [21] Hall C, Large D J, Adderley B, et al. Calcium leaching from waste steelmaking slag: Significance of leachate chemistry and effects on slag grain mineralogy[J]. Minerals Engineering, 2014,65(6):156−162.
    [22] Revathy T D R, Palanivelu K, Ramachandran A. Direct mineral carbonation of steelmaking slag for CO2, sequestration at room temperature[J]. Environmental Science & Pollution Research, 2016,23(8):7349−7359.
    [23] Sun Y, Yao M S, Zhang J P, et al. Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution[J]. Chemical Engineering Journal, 2011,173(2):437−445. doi: 10.1016/j.cej.2011.08.002
    [24] Gunning P J, Hills C D, Carey P J. Accelerated carbonation treatment of industrial wastes[J]. Waste Management, 2010,30(6):1081−1090. doi: 10.1016/j.wasman.2010.01.005
    [25] Chiang Y W, Santos R, Elsen J, et al. Two-way valorization of blast furnace slag into precipitated calcium carbonate and sorbent materials[C]//Proceedings of the 4th International Conference on Accelerated Carbonation for Environmental and Materials Engineering. 2013: 357-367.
    [26] Nyambura M G, Mugera G W, Felicia P L, et al. Carbonation of brine impacted fractionated coal fly ash: Implications for CO2 sequestration[J]. Journal of Environmental Management, 2011,92(3):655−664. doi: 10.1016/j.jenvman.2010.10.008
    [27] Teir S. Fixation of carbon dioxide by producing carbonations from minerals and steelmaking slags[M]. Finland: Espoo, Teknillinen Korkeakoulu, 2008.
    [28] Uibu M, Uus M, Kuusik R. CO2 mineral sequestration in oil-shale wastes from Estonian power production[J]. Journal of Environmental Management, 2009,90(2):1253−1260. doi: 10.1016/j.jenvman.2008.07.012
    [29] Sanna A, Dri M, Hall M R, et al. Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective[J]. Applied Energy, 2012,99(2):545−554.
    [30] Zhang H N, Xu A J, He D F, et al. Alkaline extraction characteristics of steelmaking slag batch in NH4Cl solution under environmental pressure[J]. Journal of Central South University, 2013,20(6):1482−1489. doi: 10.1007/s11771-013-1638-0
    [31] Teir S, Eloneva S, Fogelholm C J, et al. Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production[J]. Energy, 2007,32(4):528−539. doi: 10.1016/j.energy.2006.06.023
    [32] Hagenson L C, Doraiswamy L K. Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system[J]. Chemical Engineering Science, 1998,53(1):131−148. doi: 10.1016/S0009-2509(97)00193-0
    [33] Santos R M, François D, Mertens G, et al. Ultrasound-intensified mineral carbonation[J]. Applied Thermal Engineering, 2013,57(1-2):154−163. doi: 10.1016/j.applthermaleng.2012.03.035
    [34] Sanna A, Lacinska A, Styles M, et al. Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO2 sequestration[J]. Fuel Processing Technology, 2014,120(4):128−135.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  22
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回