留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高应变率对06Cr19Ni10奥氏体不锈钢动态力学性能的影响

张继林 贾海深 易湘斌 窦建明 唐林虎 秦娟娟 徐创文

张继林, 贾海深, 易湘斌, 窦建明, 唐林虎, 秦娟娟, 徐创文. 高温高应变率对06Cr19Ni10奥氏体不锈钢动态力学性能的影响[J]. 钢铁钒钛, 2022, 43(1): 145-151. doi: 10.7513/j.issn.1004-7638.2022.01.022
引用本文: 张继林, 贾海深, 易湘斌, 窦建明, 唐林虎, 秦娟娟, 徐创文. 高温高应变率对06Cr19Ni10奥氏体不锈钢动态力学性能的影响[J]. 钢铁钒钛, 2022, 43(1): 145-151. doi: 10.7513/j.issn.1004-7638.2022.01.022
Zhang Jilin, Jia Haishen, Yi Xiangbin, Dou Jianming, Tang Linhu, Qin Juanjuan, Xu Chuangwen. Effect of high temperature and high strain rate on the dynamic mechanical properties of 06Cr19Ni10 austenitic stainless steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 145-151. doi: 10.7513/j.issn.1004-7638.2022.01.022
Citation: Zhang Jilin, Jia Haishen, Yi Xiangbin, Dou Jianming, Tang Linhu, Qin Juanjuan, Xu Chuangwen. Effect of high temperature and high strain rate on the dynamic mechanical properties of 06Cr19Ni10 austenitic stainless steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 145-151. doi: 10.7513/j.issn.1004-7638.2022.01.022

高温高应变率对06Cr19Ni10奥氏体不锈钢动态力学性能的影响

doi: 10.7513/j.issn.1004-7638.2022.01.022
基金项目: 国家自然科学基金项目(51965031、51865026);甘肃省青年科技基金计划项目(21JR7RA351);甘肃省高等学校创新基金项目(2018A-129、2020B-243、2021A-156、2021B-319);甘肃省高等学校产业支撑(2021-CYZC-52);兰州工业学院“启智”人才培养计划(2018QZ-03)。
详细信息
    作者简介:

    张继林(1987—),男,甘肃民乐人,讲师,硕士,主要从事材料的动态力学性能、材料疲劳性能以及切削性能研究,E-mail:zjl-0111@163.com

    通讯作者:

    易湘斌,副教授,E-mail:530064133@qq.com

  • 中图分类号: TF76,TG142.71

Effect of high temperature and high strain rate on the dynamic mechanical properties of 06Cr19Ni10 austenitic stainless steel

  • 摘要: 采用高温分离式霍普金森(High Temperature Split Hopkinson Pressure Bar)动态试验装置,研究了06Cr19Ni10奥氏体不锈钢在温度25~300 ℃和应变率1000 ~3000 s−1下的动态力学性能。结果表明,06Cr19Ni10奥氏体不锈钢在1000~3000 s−1范围内表现出应变率强化效应,在25~300 ℃范围内表现出温度软化效应。利用扫描电子显微镜(SEM)对应变率为3000 s−1的变形试样进行微观组织研究。结果表明,高应变率下,变形带密度大,随着变形温度的增加变形带密度降低。
  • 图  1  06Cr19Ni10奥氏体不锈钢在不同应变率下的真应力-真应变曲线

    应变速率:(a) 1 000 s−1;(b) 1 500 s−1;(c) 2 000 s−1;(d) 2 500 s−1;(e) 3 000 s−1

    Figure  1.  The true stress- strain curves of 06Cr19Ni10austeniti c stainless steel deformed in different strain rates

    图  2  一定应变率下真实应力与温度的关系

    (a) 1 000 s−1;(b) 1 500 s−1;(c) 2 000 s−1;(d) 2 500 s−1;(e) 3 000 s−1

    Figure  2.  Relationship between true stress and temperature under a certain strain

    图  3  (a)峰值应力与温度的关系;(b)屈服强度与温度的关系

    Figure  3.  (a) The relationship between peak stress and temperature; (b) The relationship between yield strength and temperature

    图  4  06Cr19Ni10奥氏体不锈钢在一定温度下不同应变率的真实应力-真应变关系的比较

    (a) 25 ℃;(b) 100 ℃;(c) 200 ℃;(d) 300 ℃

    Figure  4.  Comparison of the true strain-stress relationships of 06Cr19Ni10 austenitic stainless steel at different strain rates and fixed deformation temperatures

    图  5  不同温度下ε = 0.1时真实应力与应变率的关系

    Figure  5.  The relationship between true stress and strain rate at ε = 0.1 at different temperatures

    图  6  06Cr19Ni10奥氏体不锈钢在应变率3000 s−1下不同温度变形后的微观组织

    不同放大倍数:(a)、(b) 25 ℃;(c )、(d) 100 ℃;(e) 、(f) 200 ℃;(g)、(h) 300 ℃

    Figure  6.  Microstructures of 06Cr19Ni10 austenitic stainless steel after deformation at different temperatures and a strain

    表  1  06Cr19Ni10奥氏体不锈钢主要化学成分

    Table  1.   Main chemical compositions of 06Cr19Ni10 stainless steel %

    CSiMnPSNiCr
    0.080.752.000.0450.038.2218.89
    下载: 导出CSV
  • [1] 刘勇. 密封唇焊结构奥氏体不锈钢阀门焊接性能研究[D]. 大连: 大连理工大学, 2017.

    Liu Yong. Studies on welding properties for sealing lip welding structure austenitic stainless steel valve[D]. Dalian: Dalian University of Technology, 2017.
    [2] 黄超. 316 L不锈钢力学性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    Huang Chao. Analysis on the mechanical properties of 316 L stainless steel [D]. Harbin: Harbin Engineering University, 2016.
    [3] Mei Rong, Ren Zhijun, Chou Wei. Hot deformation behavior of 06Cr18Ni11Ti austenitic stainless steel[J]. Ordnance Material Science and Engineering, 2019,42(6):88−92. (梅荣, 任志俊, 仇伟. 06Cr18Ni11Ti奥氏体不锈钢热变形行为研究[J]. 兵器材料科学与工程, 2019,42(6):88−92.
    [4] 戴哲峰. 316 L不锈钢在复杂介质环境中的应力腐蚀试验研究[D]. 杭州: 浙江工业大学, 2009.

    Dai Zhefeng. Stress corrosion test research on 316 L austenitic stainless steel in complex medium condition [D]. Hangzhou: Zhejiang University of Technology, 2009.
    [5] Dong Hanshan, Li Xiaoying. Surface engineering for joint prosthesis: State-of-the-art and future directions[J]. China Surface Engineering, 2008,21(5):1−14. (董汉山, 李小英. 人造关节材料表面工程的现状及前瞻[J]. 中国表面工程, 2008,21(5):1−14. doi: 10.3321/j.issn:1007-9289.2008.05.001
    [6] 凌玲, 李星星, 王学林, 等. 0Cr18Ni9不锈钢本构模型及其对切削力预测影响分析[J]. 中国机械工程, 2012,23(18): 2243-2248.

    Ling Ling, Li Xingxing, Wang Xuelin, et al. Constitutive model of stainless steel 0Cr18Ni9 and its influence on cutting force prediction [J]. China Mechanical Engineering, 2012, 23(18): 2243-2248. )
    [7] Wang Yan, Wang Mingjia, Cai Dayong, et al. Effect of deformation parameters on microstructure evolution of medium carbon steel[J]. Transactions of Materials and Heat Treatment, 2005,26(4):65−68. (王艳, 王明家, 蔡大勇, 等. 高强度奥氏体不锈钢的热变形行为及其热加工图[J]. 材料热处理学报, 2005,26(4):65−68.
    [8] Wang Y L, Jia G Z, Zhang T, et al. Dynamic mechanical behaviors of high-nitrogen austenitic stainless steel under high temperature and its constitutive model[J]. Explosion and Shock Waves, 2018,38(4):835−840.
    [9] Zhang Jing, Jiang Chunxia, Qiao Bangwei. Deformation behavior and constitutive equation of 14Cr17Ni2 steel at high temperature[J]. Hot Working Technology, 2018,47(14):38−43. (张静, 蒋春霞, 乔帮威. 14Cr17Ni2 钢高温变形行为及本构方程的研究[J]. 热加工工艺, 2018,47(14):38−43.
    [10] Wu Liang, Hu Yiseng, Ji Xiang, et al. Dynamic mechanical behavior and constitutive model of FV520B martensitic precipitation-hardening steel[J]. Journal of Mechanical Strength, 2018,40(3):584−588. (吴亮, 胡毅森, 纪翔, 等. 马氏体沉淀硬化不锈钢 FV520B 动态力学性能及本构模型的研究[J]. 机械强度, 2018,40(3):584−588.
    [11] Zhang Hong, Suo Tao, Li Yulong. Mechanical behavior of a stainless steel material at elevated temperatures and high strain rates[J]. Journal of Aeronautical Materials, 2012,31(1):78−83. (张红, 索涛, 李玉龙. 不锈钢材料高温、高应变率下动态力学性能的试验研究[J]. 航空材料学报, 2012,31(1):78−83. doi: 10.3969/j.issn.1005-5053.2012.1.016
    [12] Xu Zejian, Li Yulong, Liu Mingshuang, et al. Dynamic mechanical properties of stainless steel 0Crl8Nil0Ti welded joint at elevated temperratures and high strain rates[J]. Acta Metallurgica Sinica, 2008,44(1):98−104. (许泽建, 李玉龙, 刘明爽, 等. 不锈钢0Crl8Ni10Ti焊接头高温、高应变率下的动态力学性能[J]. 金属学报, 2008,44(1):98−104. doi: 10.3321/j.issn:0412-1961.2008.01.019
    [13] Shang Bing, Sheng Jing, Wang Baozhen, et al. Dynamic mechanical behavior and constitutive model of stainless steel[J]. Explosion and Shock Waves, 2008,28(6):527−531. (尚兵, 盛精, 王宝珍, 等. 不锈钢材料的动态力学性能及本构模型[J]. 爆炸与冲击, 2008,28(6):527−531. doi: 10.3321/j.issn:1001-1455.2008.06.008
    [14] He Zhu, Zhao Shougeng, Yang Jialing, et al. Experimental investigation of the dynamic material property of stainless steel: 0Cr17Ni4Cu4Nb[J]. Journal of Materials Science and Engineering, 2007,25(3):418−421. (何著, 赵寿根, 杨嘉陵, 等. 0Cr17Ni4Cu4Nb不锈钢动态力学性能研究[J]. 材料科学与工程学报, 2007,25(3):418−421. doi: 10.3969/j.issn.1673-2812.2007.03.024
    [15] 魏玉伟, 李宁, 文玉华, 等. 马氏体含量对1Cr17Ni1双相不锈钢动态和准静态力学性能的影响[J]. 金属热处理, 2012, 37(11): 6-10.

    Wei Yuwei, Li Ning, Wen Yuhua, et al. Effect of martensite content on dynamic and quasi-static mechanical properties of 1Cr17Ni1dual-phase stainless steel [J]. Heat Treatment of Metals, 2012, 37(11): 6-10.
    [16] Xu Z, Li Y. Dynamic behaviors of 0Cr18Ni10Ti stainless steel welded joints at elevated temperatures and high strain rates[J]. Mechanics of Materials, 2009,41(2):121−130. doi: 10.1016/j.mechmat.2008.10.005
    [17] Lee W S, Chen T H, Lin C F, et al. Dynamic mechanical response of biomedical 316 L stainless steel as function of strain rate and temperature[J]. Bioinorganic Chemistry and Applications, 2011,(12):1−13.
    [18] Xiong Z P, Ren X P, Bao W P, et al. Effect of high temperature and high strain rate on the dynamic mechanical properties of Fe-30Mn-3Si-4Al TWIP steel[J]. International Journal of Minerals, Metallurgy and Materials, 2009,20(9):835−841.
    [19] Li Guohe, Wang Minjie. Dynamic mechanical properties and constitutive relationship of hardened steel (45 HRC) under high temperature and high strain rate[J]. Explosion and Shock Waves, 2010,30(4):433−438. (李国和, 王敏杰. 淬硬45钢在高温高应变下的动态力学性能及本构关系[J]. 爆炸与冲击, 2010,30(4):433−438. doi: 10.11883/1001-1455(2010)04-0433-06
    [20] Bao Weiping, Ren Xueping, Zhang Yi. The characteristics of flow stress and dynamic constitutive model at high strain rates for pure iron[J]. Journal of Plasticity Engineering, 2009,16(5):125−129. (包卫平, 任学平, 张毅. 纯铁在高应变率下的流动应力特征及其动态塑性本构关系[J]. 塑性工程学报, 2009,16(5):125−129. doi: 10.3969/j.issn.1007-2012.2009.05.024
    [21] Yan Qiushi, Sun Bowen, Yang Lu. Study on dynamic mechanical behavior of structural stainless steel at elevated temperature and high strain rate[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019,47(5):128−132. (闫秋实, 孙博文, 杨璐. 高温高应变率下建筑不锈钢动态力学性能研究[J]. 华中科技大学学报(自然科学版), 2019,47(5):128−132.
    [22] 周惠久, 黄明志. 金属材料强度[M]. 北京: 科学出版社, 1989.

    Zhou Huijiu, Huang Mingzhi. Strength of metal materials[M]. Beijing: Science Press, 1989.
    [23] Mi Z L, Tang D, Dai Y J, et al. In-situ observation on the deformation behaviors of Fe-Mn-C TWIP steel[J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(6): 646-649.
    [24] Li D Z, Wei Y H, Liu C Y, et al. Effects of high strain rate on properties and microstructure evolution of TWIP steel subjected to impact loading[J]. Journal of Iron and Steel Research, International, 2010,17(6):67−73. doi: 10.1016/S1006-706X(10)60116-1
    [25] Xiong R G, Fu R Y, Su Y, et al. Tensile properties of TWIP steel at high strain rate[J]. Journal of Iron and Steel Research, International, 2009,16(1):81−86. doi: 10.1016/S1006-706X(09)60015-7
    [26] Xiong Z P, Rrn X P, Bao W P, et al. Dynamic mechanical properties of the Fe-30Mn-3Si-4Al TWIP steel after different heat treatments[J]. Materials Science & Engineering A, 2011,530(12):426−431.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  7
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-06
  • 录用日期:  2022-01-05
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回