留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铸铁表面激光熔覆1725/WC复合涂层工艺参数优化

杨海丽 周海宽 张凯奕

杨海丽, 周海宽, 张凯奕. 铸铁表面激光熔覆1725/WC复合涂层工艺参数优化[J]. 钢铁钒钛, 2022, 43(1): 152-157. doi: 10.7513/j.issn.1004-7638.2022.01.023
引用本文: 杨海丽, 周海宽, 张凯奕. 铸铁表面激光熔覆1725/WC复合涂层工艺参数优化[J]. 钢铁钒钛, 2022, 43(1): 152-157. doi: 10.7513/j.issn.1004-7638.2022.01.023
Yang Haili, Zhou Haikuan, Zhang Kaiyi. Process parameter optimization of 1725/WC composite coating on cast iron surface by laser cladding[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 152-157. doi: 10.7513/j.issn.1004-7638.2022.01.023
Citation: Yang Haili, Zhou Haikuan, Zhang Kaiyi. Process parameter optimization of 1725/WC composite coating on cast iron surface by laser cladding[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 152-157. doi: 10.7513/j.issn.1004-7638.2022.01.023

铸铁表面激光熔覆1725/WC复合涂层工艺参数优化

doi: 10.7513/j.issn.1004-7638.2022.01.023
详细信息
    作者简介:

    杨海丽(1968—),女,教授,博士,研究方向:新型材料的制备及其表面改性,E-mail:sjmsxmhl@126.com

    通讯作者:

    张凯奕(1989—),男,硕士研究生,主要研究方向为金属材料表面改性,E-mail:zky282734056@163.com

  • 中图分类号: TF593,TG143

Process parameter optimization of 1725/WC composite coating on cast iron surface by laser cladding

  • 摘要: 采用激光熔覆技术在铸铁表面制备了1725/WC复合涂层,利用正交试验考察了激光功率、扫描速度及送粉率等因素对熔覆层稀释率和硬度的影响。结果表明:各因素对熔覆层稀释率影响的主次顺序为激光功率>送粉率>扫描速度。对熔覆层表面显微硬度影响的主次顺序为送粉率>激光功率>扫描速度。最优工艺参数为激光功率2 000 W,扫描速度15 mm/s,送粉率10 g/min。按最优工艺制备的1725/WC复合涂层成形质量较好,WC分布较均匀,熔覆层的平均硬度(HV0.2)为483.0。
  • 图  1  基体、1725粉末及WC的SEM形貌

    (a)基体; (b) 1725粉末; (c)WC

    Figure  1.  SEM morphologies of the substrate, 1725 powder and WC

    图  2  9组正交试验制备的熔覆层截面形貌

    Figure  2.  Section morphologies of cladding coatings prepared under different process conditions

    图  3  WC分布机理示意

    Figure  3.  Schematic diagram of WC distribution mechanism

    图  4  最优工艺制备的1725/WC熔覆层截面形貌

    (a)整体形貌;(b)熔合区形貌;(c)中上部形貌;(d)图c的放大形貌

    Figure  4.  Cross section morphologies of 1725/WC cladding coating prepared under the optimized process

    表  1  球墨铸铁QT400-15化学成分

    Table  1.   Chemical compositions of QT400-15 nodular cast iron %

    CSiMnPSMgCuFe
    3.62.60.28≤0.05≤0.020.035≤0.1Bal.
    下载: 导出CSV

    表  2  1725粉末化学成分

    Table  2.   Chemical compositions of 1725 powder %

    CrSiBAlFeCNi
    3.222.581.090.421.860.11Bal.
    下载: 导出CSV

    表  3  L9(34)正交试验因素水平

    Table  3.   Orthogonal factors and levels of L9(34)

    水平A
    功率
    / W
    B
    扫描速率
    /( mm·s−1)
    C
    送粉速率
    /( g·min−1)
    115001010
    22 0001514
    325002018
    下载: 导出CSV

    表  4  L9(34)正交试验结果及极差分析

    Table  4.   Experimental results and range analysis of L9(34) orthogonal test

    编号
    ABCH
    /mm
    h
    /mm
    B
    /mm
    b
    /mm
    γ
    /%
    硬度
    (HV0.2)
    1 1500 10 10 0.83 0.19 4.88 4.72 18.13 539.4
    2 1500 15 14 0.51 0.12 4.77 4.67 18.72 454.4
    3 1500 20 18 0.47 0.08 4.52 4.52 14.55 465.2
    4 2000 10 14 1.25 0.26 5.32 5.32 17.22 447.4
    5 2000 15 18 0.68 0.13 5.26 5.26 16.05 455.5
    6 2000 20 10 0.50 0.20 5.01 5.01 28.57 455.1
    7 2500 10 18 1.40 0.40 6.01 5.95 22.05 446.1
    8 2500 15 10 0.90 0.42 5.80 5.80 31.82 472.5
    9 2500 20 14 0.61 0.20 5.50 5.50 24.69 430.5
    γ k1 17.13 19.13 26.17
    k2 20.61 22.20 20.21
    k3 26.18 22.60 17.55
    R 9.05 3.47 8.62
    硬度 k1 486.3 477.6 489.0
    k2 452.7 460.8 444.1
    k3 449.7 450.3 455.6
    R 36.6 27.3 44.9
    下载: 导出CSV

    表  5  图4(d)中标记点EDS分析

    Table  5.   EDS analysis of marker points in Fig. 4(d) %

    CrSiFeNiCWAl
    A 4.64 8.44 86.92
    B 2.29 1.50 1.85 71.50 6.52 15.96 0.38
    C 3.00 1.13 1.89 87.60 5.36 1.02
    D 1.89 1.15 1.35 27.79 10.94 56.88
    下载: 导出CSV
  • [1] Zhang Kaiyi, Han Hongsheng, Yang Chuan, et al. Microstructures and properties of hastelloy C276 on cast iron surface by laser cladding[J]. Surface Technology, 2021,50(6):109−115. (张凯奕, 韩宏升, 杨川, 等. 铸铁表面激光熔覆哈氏合金C276组织及性能[J]. 表面技术, 2021,50(6):109−115.
    [2] Schoenborna S, Kaufmanna H, Sonsinoa C M, et al. Cumulative damage of high-strength cast iron alloys for automotive applications[J]. Procedia Engineering, 2015,101:440−449. doi: 10.1016/j.proeng.2015.02.053
    [3] Maraveas C, Wanga Y C, Swailes T, et al. An experimental investigation of mechanical properties of structural cast iron at elevated temperatures and after cooling down[J]. Fire Safety Journal, 2015,71(1):340−352.
    [4] Sun T, Song R B, Wang X, et al. Abrasive wear behavior and mechanism of high chromium cast iron[J]. Journal of Iron and Steel Research International, 2015,22(1):84−90. doi: 10.1016/S1006-706X(15)60014-0
    [5] Feng Xiaoli, Wang Haifeng, Liu Xuechao, et al. Effect of Al content on wear and corrosion resistance of Ni-based alloy coatings by laser cladding[J]. Surface and Coatings Technology, 2021,412:1−12.
    [6] Zhang Shuling, Qiu Mingkun, Chen Weiye, et al. Preparation technology of wear resistant coatings[J]. Hot Working Technology, 2019,48(10):25−30. (张树玲, 邱明坤, 陈炜晔, 等. 耐磨涂层的制备技术[J]. 热加工工艺, 2019,48(10):25−30.
    [7] Akash Vyas, Jyoti Menghani. Parametric investigation of laser assisted cladding process: A review[J]. Materials Today:Proceedings, 2021,44:1828−1832. doi: 10.1016/j.matpr.2020.12.010
    [8] Anas Ahmad Siddiqui, Avanish Kumar Dubey. Recent trends in laser cladding and surface alloying[J]. Optics & Laser Technology, 2021,134:1−20.
    [9] Farahmand P, Liu S, Zhang Z, et al. Laser cladding assisted by induction heating of Ni-WC composite enhanced by nano-WC and La2O3[J]. Ceramics International, 2014,40(10):15421−15438. doi: 10.1016/j.ceramint.2014.06.097
    [10] Qiao Lei, Wu Yuping, Hong Sheng, et al. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying[J]. Ceramics International, 2021,47(2):1829−1836. doi: 10.1016/j.ceramint.2020.09.009
    [11] Wang Hui, Xia Weiming, Jin Yuansheng. A study on abrasive resistance of Ni-based coatings with a WC hard phase[J]. Wear, 1996,195(1−2):47−52. doi: 10.1016/0043-1648(95)06762-0
    [12] Dong Dongmei, Chen Jufang, Lei Weining. Investigation on forming effect and dilution rate of laser cladding coating on 45 steel surfaces[J]. Hot Working Technology, 2019,48(4):163−166,169. (董冬梅, 陈菊芳, 雷卫宁. 45钢表面激光熔覆层成形效果及稀释率研究[J]. 热加工工艺, 2019,48(4):163−166,169.
    [13] Lee Y S, Nordin M, Babu S S, et al. Influence of fluid convection on weld pool formation in laser cladding[J]. Welding Journal, 2014,93(8):292−300.
    [14] Singh A K, Bal K S, Dey D, et al. Experimental investigation and parametric optimization for minimization of dilution during direct laser metal deposition of tungsten carbide and cobalt powder mixture on SS304 substrate[J]. Powder Technology, 2021,390:339−353. doi: 10.1016/j.powtec.2021.05.056
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  17
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回