留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti处理工艺对钢中夹杂物的影响

肖爱达 郑庆 梁亮 周剑丰 谢世正 王勃 张波 刘春泉

肖爱达, 郑庆, 梁亮, 周剑丰, 谢世正, 王勃, 张波, 刘春泉. Ti处理工艺对钢中夹杂物的影响[J]. 钢铁钒钛, 2022, 43(1): 158-164. doi: 10.7513/j.issn.1004-7638.2022.01.024
引用本文: 肖爱达, 郑庆, 梁亮, 周剑丰, 谢世正, 王勃, 张波, 刘春泉. Ti处理工艺对钢中夹杂物的影响[J]. 钢铁钒钛, 2022, 43(1): 158-164. doi: 10.7513/j.issn.1004-7638.2022.01.024
Xiao Aida, Zheng Qing, Liang Liang, Zhou Jianfeng, Xie Shizheng, Wang Bo, Zhang Bo, Liu Chunquan. Effect of Ti treatment process on inclusions in steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 158-164. doi: 10.7513/j.issn.1004-7638.2022.01.024
Citation: Xiao Aida, Zheng Qing, Liang Liang, Zhou Jianfeng, Xie Shizheng, Wang Bo, Zhang Bo, Liu Chunquan. Effect of Ti treatment process on inclusions in steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 158-164. doi: 10.7513/j.issn.1004-7638.2022.01.024

Ti处理工艺对钢中夹杂物的影响

doi: 10.7513/j.issn.1004-7638.2022.01.024
基金项目: 湖南省科技创新计划项目(No. 2018XK2301);湖南省自然科学基金项目(No. 2019JJ60062)
详细信息
    作者简介:

    肖爱达(1977—),男,湖南娄底人,博士,高级工程师,研究方向:超高强钢板的开发,E-mail:xiaoaida@163.com

  • 中图分类号: TF823

Effect of Ti treatment process on inclusions in steel

  • 摘要: 采用模拟计算和试验相结合的方式研究了加Ti处理对钢中夹杂物的影响,探明了含Ti氧化物夹杂物的形成条件及演变过程。研究结果表明:在1600 ℃温度下,当钢中[O]含量大于22×10−6时,才会生成含Ti氧化物夹杂物。同时,由于钢中[Als]的存在会抑制含Ti氧化物夹杂的生成,要求在冶炼过程中尽可能避免采用金属Al进行脱氧处理;当Ti处理前钢中[O]含量在80×10−6以内时,随着[O]含量的增加,夹杂物尺寸未见明显变化;在Ti处理结束后加入Ca粒可对夹杂物进行改性处理,促使MnS在夹杂物上形核,从而有利于促进晶内针状铁素体的形成。
  • 图  1  钢水氧含量对钛氧化物的生成影响

    Figure  1.  The influence of molten steel oxygen content on the formation of titanium oxide

    图  2  Ti处理过对钛氧化物的生成影响

    Figure  2.  The effect of Ti treatment on the formation of titanium oxide

    图  3  钢水Al含量对钛氧化物的生成影响

    Figure  3.  The influence of Al content in molten steel on the formation of titanium oxide

    图  4  25 kVA立式高温碳管炉

    Figure  4.  25 kVA vertical high temperature carbon tube furnace

    图  5  试验中显微夹杂物形貌及能谱分析

    Figure  5.  Microscopic morphology and energy spectrum analysis on inclusion

    图  6  试验中显微夹杂物形貌及能谱分析

    Figure  6.  Microscopic morphology and energy spectrum analysis on inclusion

    图  7  试验中显微夹杂物形貌及能谱分析

    Figure  7.  Microscopic morphology and energy spectrum analysis on inclusion

    图  8  试验中显微夹杂物形貌及能谱分析

    Figure  8.  Microscopic morphology and energy spectrum analysis on inclusion

    表  1  钛氧化物生成热力学计算钢水条件

    Table  1.   The chemical compositions of steel used for thermodynamic calculation %

    CSiMnPSNbN
    0.240.251.10.0120.0050.020.005
    下载: 导出CSV

    表  2  加Ti处理前后钢中[O]含量×106

    Table  2.   [O] content in steel before and after Ti treatment ×106

    设计[O]含量 加Ti前[O]含量 加Ti后[O]含量
    15 21 19
    30 32 17
    40 41 18
    50 49 19
    60 58 20
    80 77 22
    下载: 导出CSV
  • [1] Liu Liu. Key production-technology for high-quality special steels[J]. Iron & Steel, 2018,53(4):1−7. (刘浏. 高品质特殊钢关键生产技术[J]. 钢铁, 2018,53(4):1−7.
    [2] Wang Xindong, Tian Jinglei, Song Chengyuan. Innovative practice technology and outlook in large iron and steel enterprise green manufacturing[J]. Iron & Steel, 2018,53(2):1−9. (王新东, 田京雷, 宋程远. 大型钢铁企业绿色制造创新实践与展望[J]. 钢铁, 2018,53(2):1−9.
    [3] Wang Deyong, Qu Tianpeng. Development and prospect of Mg clean steel technology[J]. Steelmaking, 2020,36(5):1−13,20. (王德永, 屈天鹏. 镁洁净钢新技术发展与展望[J]. 炼钢, 2020,36(5):1−13,20.
    [4] Lu Bin, Chen Furong, Zhi Jianguo, et al. Enhanced welding properties of high strength steel via rare earth oxide metallurgy technology[J]. Acta Metallurgica Sinica, 2020,56(9):1206−1216. (陆斌, 陈芙蓉, 智建国, 等. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020,56(9):1206−1216.
    [5] Li Yang, Du Pengfei, Jiang Zhouhua, et al. Effects of TiC on the microstructure and formation of acicular ferrite in ferritic stainless steel[J]. International Journal of Minerals, Metallurgy and Materials, 2019,26(11):1385−1395. doi: 10.1007/s12613-019-1845-2
    [6] Wang Bingxing, Zhu Fuxian, Wang Chao, et al. Application of oxide metallurgy in high heat input welding steels[J]. Iron & Steel, 2019,54(9):12−21. (王丙兴, 朱伏先, 王超, 等. 氧化物冶金在大线能量焊接用钢中的应用[J]. 钢铁, 2019,54(9):12−21.
    [7] Zhu Liguang, Sun Ligen. Application and prospect for shipbuilding steel development with oxide metallurgy technique[J]. Steelmaking, 2017,33(5):1−11. (朱立光, 孙立根. 氧化物冶金技术及其在船体钢开发中的应用及展望[J]. 炼钢, 2017,33(5):1−11.
    [8] Pan Xiulan, Li Zhen, Wang Yanhong, et al. Oxygen control in steel and oxide metallurgy[J]. Angang Technology, 2007,(1):10−13,20. (潘秀兰, 李震, 王艳红, 等. 钢中氧的控制及氧化物冶金[J]. 鞍钢技术, 2007,(1):10−13,20. doi: 10.3969/j.issn.1006-4613.2007.01.003
    [9] Tian Qianren, Li Jie, Wu Xiangyu, et al. Growth mechanism of MnS/Fe on TiN surface: First principle investigation[J]. Journal of Alloys and Compounds, 2020:844.
    [10] Zhu Liguang, Wang Yan, Wang Shuoming, et al. Research of microalloy elements to induce intragranular acicular ferrite in shipbuilding steel[J]. Ironmaking & Steelmaking, 2019,46(6):499−507.
    [11] Sun Ligen, Li Huirong, Zhu Liguang, et al. Research on the evolution mechanism of pinned particles in welding HAZ of Mg treated shipbuilding steel[J]. Materials & Design, 2020,192:1−13.
    [12] Kong Hui, Zhou YaHui, Lin Hao, et al. The mechanism of intragranular acicular ferrite nucleation induced by Mg-Al-O inclusions[J]. Advances in Materials Science and Engineering, 2015,(6):1−6.
    [13] Lou Haonan, Wang Chao, Wang Bingxing, et al. Evolution of inclusions and associated microstructure in Ti–Mg oxide metallurgy steel[J]. ISIJ International, 2019,59(2):312−318. doi: 10.2355/isijinternational.ISIJINT-2018-445
    [14] Li Chao, Dong Tingliang, Kong Weiming, et al. Evolution of inclusions in high heat input welding steel with TiCa compound deoxygenation[J]. Iron & Steel, 2019,54(2):35−40. (李超, 董廷亮, 孔维明, 等. Ti-Ca复合脱氧大线能量焊接用钢中夹杂物的演变[J]. 钢铁, 2019,54(2):35−40.
    [15] Wang Bingxing, Wu Zhongzi, Lou Haonan, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel[J]. Journal of Iron and Steel Research, 2019,31(2):239−246. (王丙兴, 武仲子, 娄号南, 等. 氧化物冶金工艺对EH36钢HAZ组织性能的影响[J]. 钢铁研究学报, 2019,31(2):239−246.
    [16] Wan Xiangliang, Wu Kaiming, Wang Henghui, et al. Applications of oxide metallurgy technology on high heat input welding steel[J]. China Metallurgy, 2015,25(6):6−12. (万响亮, 吴开明, 王恒辉, 等. 氧化物冶金技术在大线能量焊接用钢的应用[J]. 中国冶金, 2015,25(6):6−12.
    [17] 陈光勇. 氧化物冶金工艺对热轧EH40钢板大线能量焊接性能的影响[D]. 沈阳: 东北大学, 2010.

    Chen Guangyong. Effect of oxidation metallurgical process on weldability with high heat input welding of hot rolling EH40 plate steel[D]. Shengyang: Northeastern University, 2010.
    [18] Li Minggang, Matsuura Hiroyuki, Tsukihashi Fumitaka. Time-dependent evolution of Ti-bearing oxide inclusions during isothermal holding at 1573 K (1300 ℃)[J]. Metallurgical and Materials Transactions A, 2019,50(2):863−873. doi: 10.1007/s11661-018-5015-3
    [19] 郑世伟. 氧化物冶金过程中晶内铁素体竞争优先析出机制的研究[D]. 唐山: 华北理工大学, 2019.

    Zheng Shiwei. Research on the preferential precipitation mechanism of intragranular ferrite in the process of oxide metallurgy[D]. Tangshan: North China University of Technology, 2019.
    [20] Xu Chen, Zhang Mingya, Li Jianli, et al. The effect of MgTiO3 adding on inclusion characteristics[J]. High Temperature Materials and Processes, 2019,38(2019):576−581. doi: 10.1515/htmp-2019-0004
    [21] Wang Chao, Lou Haonan, Wang Bingxing, et al. Effect of alloying elements on microstructure and properties of high heat input welding steel[J]. Iron & Steel, 2018,53(6):85−91,97. (王超, 娄号南, 王丙兴, 等. 合金元素对大线能量焊接用钢组织性能的影响[J]. 钢铁, 2018,53(6):85−91,97.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  7
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回