中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti处理工艺对钢中夹杂物的影响

肖爱达 郑庆 梁亮 周剑丰 谢世正 王勃 张波 刘春泉

肖爱达, 郑庆, 梁亮, 周剑丰, 谢世正, 王勃, 张波, 刘春泉. Ti处理工艺对钢中夹杂物的影响[J]. 钢铁钒钛, 2022, 43(1): 158-164. doi: 10.7513/j.issn.1004-7638.2022.01.024
引用本文: 肖爱达, 郑庆, 梁亮, 周剑丰, 谢世正, 王勃, 张波, 刘春泉. Ti处理工艺对钢中夹杂物的影响[J]. 钢铁钒钛, 2022, 43(1): 158-164. doi: 10.7513/j.issn.1004-7638.2022.01.024
Xiao Aida, Zheng Qing, Liang Liang, Zhou Jianfeng, Xie Shizheng, Wang Bo, Zhang Bo, Liu Chunquan. Effect of Ti treatment process on inclusions in steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 158-164. doi: 10.7513/j.issn.1004-7638.2022.01.024
Citation: Xiao Aida, Zheng Qing, Liang Liang, Zhou Jianfeng, Xie Shizheng, Wang Bo, Zhang Bo, Liu Chunquan. Effect of Ti treatment process on inclusions in steel[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 158-164. doi: 10.7513/j.issn.1004-7638.2022.01.024

Ti处理工艺对钢中夹杂物的影响

doi: 10.7513/j.issn.1004-7638.2022.01.024
基金项目: 湖南省科技创新计划项目(No. 2018XK2301);湖南省自然科学基金项目(No. 2019JJ60062)
详细信息
    作者简介:

    肖爱达(1977—),男,湖南娄底人,博士,高级工程师,研究方向:超高强钢板的开发,E-mail:xiaoaida@163.com

  • 中图分类号: TF823

Effect of Ti treatment process on inclusions in steel

  • 摘要: 采用模拟计算和试验相结合的方式研究了加Ti处理对钢中夹杂物的影响,探明了含Ti氧化物夹杂物的形成条件及演变过程。研究结果表明:在1600 ℃温度下,当钢中[O]含量大于22×10−6时,才会生成含Ti氧化物夹杂物。同时,由于钢中[Als]的存在会抑制含Ti氧化物夹杂的生成,要求在冶炼过程中尽可能避免采用金属Al进行脱氧处理;当Ti处理前钢中[O]含量在80×10−6以内时,随着[O]含量的增加,夹杂物尺寸未见明显变化;在Ti处理结束后加入Ca粒可对夹杂物进行改性处理,促使MnS在夹杂物上形核,从而有利于促进晶内针状铁素体的形成。
  • 图  1  钢水氧含量对钛氧化物的生成影响

    Figure  1.  The influence of molten steel oxygen content on the formation of titanium oxide

    图  2  Ti处理过对钛氧化物的生成影响

    Figure  2.  The effect of Ti treatment on the formation of titanium oxide

    图  3  钢水Al含量对钛氧化物的生成影响

    Figure  3.  The influence of Al content in molten steel on the formation of titanium oxide

    图  4  25 kVA立式高温碳管炉

    Figure  4.  25 kVA vertical high temperature carbon tube furnace

    图  5  试验中显微夹杂物形貌及能谱分析

    Figure  5.  Microscopic morphology and energy spectrum analysis on inclusion

    图  6  试验中显微夹杂物形貌及能谱分析

    Figure  6.  Microscopic morphology and energy spectrum analysis on inclusion

    图  7  试验中显微夹杂物形貌及能谱分析

    Figure  7.  Microscopic morphology and energy spectrum analysis on inclusion

    图  8  试验中显微夹杂物形貌及能谱分析

    Figure  8.  Microscopic morphology and energy spectrum analysis on inclusion

    表  1  钛氧化物生成热力学计算钢水条件

    Table  1.   The chemical compositions of steel used for thermodynamic calculation %

    CSiMnPSNbN
    0.240.251.10.0120.0050.020.005
    下载: 导出CSV

    表  2  加Ti处理前后钢中[O]含量×106

    Table  2.   [O] content in steel before and after Ti treatment ×106

    设计[O]含量 加Ti前[O]含量 加Ti后[O]含量
    15 21 19
    30 32 17
    40 41 18
    50 49 19
    60 58 20
    80 77 22
    下载: 导出CSV
  • [1] Liu Liu. Key production-technology for high-quality special steels[J]. Iron & Steel, 2018,53(4):1−7. (刘浏. 高品质特殊钢关键生产技术[J]. 钢铁, 2018,53(4):1−7.
    [2] Wang Xindong, Tian Jinglei, Song Chengyuan. Innovative practice technology and outlook in large iron and steel enterprise green manufacturing[J]. Iron & Steel, 2018,53(2):1−9. (王新东, 田京雷, 宋程远. 大型钢铁企业绿色制造创新实践与展望[J]. 钢铁, 2018,53(2):1−9.
    [3] Wang Deyong, Qu Tianpeng. Development and prospect of Mg clean steel technology[J]. Steelmaking, 2020,36(5):1−13,20. (王德永, 屈天鹏. 镁洁净钢新技术发展与展望[J]. 炼钢, 2020,36(5):1−13,20.
    [4] Lu Bin, Chen Furong, Zhi Jianguo, et al. Enhanced welding properties of high strength steel via rare earth oxide metallurgy technology[J]. Acta Metallurgica Sinica, 2020,56(9):1206−1216. (陆斌, 陈芙蓉, 智建国, 等. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020,56(9):1206−1216.
    [5] Li Yang, Du Pengfei, Jiang Zhouhua, et al. Effects of TiC on the microstructure and formation of acicular ferrite in ferritic stainless steel[J]. International Journal of Minerals, Metallurgy and Materials, 2019,26(11):1385−1395. doi: 10.1007/s12613-019-1845-2
    [6] Wang Bingxing, Zhu Fuxian, Wang Chao, et al. Application of oxide metallurgy in high heat input welding steels[J]. Iron & Steel, 2019,54(9):12−21. (王丙兴, 朱伏先, 王超, 等. 氧化物冶金在大线能量焊接用钢中的应用[J]. 钢铁, 2019,54(9):12−21.
    [7] Zhu Liguang, Sun Ligen. Application and prospect for shipbuilding steel development with oxide metallurgy technique[J]. Steelmaking, 2017,33(5):1−11. (朱立光, 孙立根. 氧化物冶金技术及其在船体钢开发中的应用及展望[J]. 炼钢, 2017,33(5):1−11.
    [8] Pan Xiulan, Li Zhen, Wang Yanhong, et al. Oxygen control in steel and oxide metallurgy[J]. Angang Technology, 2007,(1):10−13,20. (潘秀兰, 李震, 王艳红, 等. 钢中氧的控制及氧化物冶金[J]. 鞍钢技术, 2007,(1):10−13,20. doi: 10.3969/j.issn.1006-4613.2007.01.003
    [9] Tian Qianren, Li Jie, Wu Xiangyu, et al. Growth mechanism of MnS/Fe on TiN surface: First principle investigation[J]. Journal of Alloys and Compounds, 2020:844.
    [10] Zhu Liguang, Wang Yan, Wang Shuoming, et al. Research of microalloy elements to induce intragranular acicular ferrite in shipbuilding steel[J]. Ironmaking & Steelmaking, 2019,46(6):499−507.
    [11] Sun Ligen, Li Huirong, Zhu Liguang, et al. Research on the evolution mechanism of pinned particles in welding HAZ of Mg treated shipbuilding steel[J]. Materials & Design, 2020,192:1−13.
    [12] Kong Hui, Zhou YaHui, Lin Hao, et al. The mechanism of intragranular acicular ferrite nucleation induced by Mg-Al-O inclusions[J]. Advances in Materials Science and Engineering, 2015,(6):1−6.
    [13] Lou Haonan, Wang Chao, Wang Bingxing, et al. Evolution of inclusions and associated microstructure in Ti–Mg oxide metallurgy steel[J]. ISIJ International, 2019,59(2):312−318. doi: 10.2355/isijinternational.ISIJINT-2018-445
    [14] Li Chao, Dong Tingliang, Kong Weiming, et al. Evolution of inclusions in high heat input welding steel with TiCa compound deoxygenation[J]. Iron & Steel, 2019,54(2):35−40. (李超, 董廷亮, 孔维明, 等. Ti-Ca复合脱氧大线能量焊接用钢中夹杂物的演变[J]. 钢铁, 2019,54(2):35−40.
    [15] Wang Bingxing, Wu Zhongzi, Lou Haonan, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel[J]. Journal of Iron and Steel Research, 2019,31(2):239−246. (王丙兴, 武仲子, 娄号南, 等. 氧化物冶金工艺对EH36钢HAZ组织性能的影响[J]. 钢铁研究学报, 2019,31(2):239−246.
    [16] Wan Xiangliang, Wu Kaiming, Wang Henghui, et al. Applications of oxide metallurgy technology on high heat input welding steel[J]. China Metallurgy, 2015,25(6):6−12. (万响亮, 吴开明, 王恒辉, 等. 氧化物冶金技术在大线能量焊接用钢的应用[J]. 中国冶金, 2015,25(6):6−12.
    [17] 陈光勇. 氧化物冶金工艺对热轧EH40钢板大线能量焊接性能的影响[D]. 沈阳: 东北大学, 2010.

    Chen Guangyong. Effect of oxidation metallurgical process on weldability with high heat input welding of hot rolling EH40 plate steel[D]. Shengyang: Northeastern University, 2010.
    [18] Li Minggang, Matsuura Hiroyuki, Tsukihashi Fumitaka. Time-dependent evolution of Ti-bearing oxide inclusions during isothermal holding at 1573 K (1300 ℃)[J]. Metallurgical and Materials Transactions A, 2019,50(2):863−873. doi: 10.1007/s11661-018-5015-3
    [19] 郑世伟. 氧化物冶金过程中晶内铁素体竞争优先析出机制的研究[D]. 唐山: 华北理工大学, 2019.

    Zheng Shiwei. Research on the preferential precipitation mechanism of intragranular ferrite in the process of oxide metallurgy[D]. Tangshan: North China University of Technology, 2019.
    [20] Xu Chen, Zhang Mingya, Li Jianli, et al. The effect of MgTiO3 adding on inclusion characteristics[J]. High Temperature Materials and Processes, 2019,38(2019):576−581. doi: 10.1515/htmp-2019-0004
    [21] Wang Chao, Lou Haonan, Wang Bingxing, et al. Effect of alloying elements on microstructure and properties of high heat input welding steel[J]. Iron & Steel, 2018,53(6):85−91,97. (王超, 娄号南, 王丙兴, 等. 合金元素对大线能量焊接用钢组织性能的影响[J]. 钢铁, 2018,53(6):85−91,97.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  51
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回