中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土变质剂对热冲压成型钢夹杂物形貌及尺寸分布的影响

杨丽 孙雅平 李永亮 陈彤 孙天昊

杨丽, 孙雅平, 李永亮, 陈彤, 孙天昊. 稀土变质剂对热冲压成型钢夹杂物形貌及尺寸分布的影响[J]. 钢铁钒钛, 2022, 43(1): 174-179. doi: 10.7513/j.issn.1004-7638.2022.01.026
引用本文: 杨丽, 孙雅平, 李永亮, 陈彤, 孙天昊. 稀土变质剂对热冲压成型钢夹杂物形貌及尺寸分布的影响[J]. 钢铁钒钛, 2022, 43(1): 174-179. doi: 10.7513/j.issn.1004-7638.2022.01.026
Yang Li, Sun Yaping, Li Yongliang, Chen Tong, Sun Tianhao. Influence of rare earth modifier on the nonmetallic inclusion morphology and size distribution about hot stamping[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 174-179. doi: 10.7513/j.issn.1004-7638.2022.01.026
Citation: Yang Li, Sun Yaping, Li Yongliang, Chen Tong, Sun Tianhao. Influence of rare earth modifier on the nonmetallic inclusion morphology and size distribution about hot stamping[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 174-179. doi: 10.7513/j.issn.1004-7638.2022.01.026

稀土变质剂对热冲压成型钢夹杂物形貌及尺寸分布的影响

doi: 10.7513/j.issn.1004-7638.2022.01.026
基金项目: 中央引导地方科技发展专项资金项目(YDZX20191400004587)。
详细信息
    作者简介:

    杨丽(1983—),女,河北唐山人,副教授,本科,主要从事钢铁冶金生产及分析工作, E-mail: tsyangli2009@163.com

    通讯作者:

    孙雅平(1973—),女,副教授,主要从事冶金生产工艺研究,E-mail: 425909397@qq.com

  • 中图分类号: TF76,TG142.1

Influence of rare earth modifier on the nonmetallic inclusion morphology and size distribution about hot stamping

  • 摘要: 利用光学显微镜、扫描电镜等手段研究了稀土变质剂对1 500 MPa级热冲压成型用钢夹杂物形貌、尺寸和分布状态的影响,并在此基础上对钢的显微组织和常温塑性进行了对比评价。结果显示:添加稀土变质剂后,铸坯中心偏析现象消失;与未进行变质剂处理的钢相比,粗大的D类质点夹杂物显著降低,但D类夹杂的密度并未减少;产品的显微组织得到有效细化,常温塑性显著提高,对材料性能提升效果显著。
  • 图  1  22MnB5铸坯低倍组织

    Figure  1.  Macro morphology of the continuous casting 22MnB5 slab

    图  2  夹杂物形貌及分布状态

    (a) 1#钢铸坯;(b) 2#钢铸坯;(c) 1#钢热轧板;(d) 2#钢热轧板

    Figure  2.  Morphology and distribution of nonmetallic inclusion in slab and hot-rolled plate

    图  3  2#钢种夹杂物随热变形行为的演化

    (a)、 (b) 铸坯中夹杂物;(c)、 (d) 热轧钢板中夹杂物

    Figure  3.  SEM observation and energy pattern of nonmetallic inclusion in 2# steel

    图  4  稀土变质剂对D类夹杂物尺寸的影响机理示意

    Figure  4.  Mechanism for the size change of D-type inclusion by rare earth modifier treatement

    图  5  稀土变质剂对连退钢板显微组织和塑性的影响

    (a) 1#钢显微组织;(b) 2#钢显微组织;(c) 1#钢折弯;(d) 2#钢折弯

    Figure  5.  Influence of rare earth modifier on the microstructure and plastic property

    表  1  试验钢的主要化学成分

    Table  1.   Main chemical compositions of experimental steels %

    序号CMnSPSiNAlsCrTiCaLaCe
    1#0.241.300.00200.01100.260.00380.0470. 210.0370.0020
    2#0.221.350.00300.01400.280.00400.0400.200.0320.00210.00100.0016
    下载: 导出CSV

    表  2  稀土变质剂对热轧钢卷非金属夹杂物类型和评级的影响

    Table  2.   Effect of rare earth modifier on the type and grade of nonmetallic inclusion

    钢种夹杂物评级/级
    ABCD-细系D-粗系Ds
    1#1.00.50.51.52.01.0
    2#0.50.51.02.00.50
    下载: 导出CSV
  • [1] Jiang Haitao, Tang Di, Mi Zhenli, et al. Influence of processing parameters of hot stamping to mechanical properties of martensite steel and segregation of boron[J]. Journal of Materials Engineering, 2010,52(2):69−73. (江海涛, 唐荻, 米振莉, 等. 工艺参数对热冲压成型钢组织性能及硼偏聚的影响[J]. 材料工程, 2010,52(2):69−73. doi: 10.3969/j.issn.1001-4381.2010.02.016
    [2] Tan Hailin, Gui Zhongxiang, Zhang Yisheng. Integrity alteration of Al-Si coating morphology during hot stamping[J]. Journal of Plasticity Engineering, 2017,24(4):89−94. (谭海林, 桂中祥, 张宜生. Al-Si镀层在热冲压成形中的形貌完整性变化[J]. 塑性工程学报, 2017,24(4):89−94.
    [3] Wang Jiying, Zhu Shuaishuai, Li Qi, et al. Effect of quenching temperature on microstructure and properties of thermoformed 22MnB5 martensitic steel[J]. Heat Treatment of Metals, 2018,43(9):75−79. (王吉应, 朱帅帅, 李琦, 等. 淬火温度对热成形22MnB5马氏体钢组织及性能的影响[J]. 金属热处理, 2018,43(9):75−79.
    [4] Qiu Xiaopan, Zhang Jie, Jiang Sheming, et al. Effect of stamping temperature on cracks in coating of galvanized 22MnB5 steel plates[J]. Corrosion and Protection, 2018,39(4):302−306. (邱肖盼, 张杰, 江社明, 等. 冲压温度对镀锌22MnB5钢板镀层中裂纹的影响[J]. 腐蚀与防护, 2018,39(4):302−306.
    [5] Weimin Z, Dongxuan X, Yanhong C. Experimental investigation of the effect of the material damage induced in sheet metal forming process on the service performance of 22MnB5 steel[J]. Chinese Journal of Mechanical Engineering, 2016,29(4):747−755. doi: 10.3901/CJME.2016.0513.065
    [6] Yuan Changwang, Huang Jiajin, Li Shengci, et al. Influence of die and temperature on microstructure and properties of 1500 MPa thermoforming steel[J]. Nonferrous Metals Science and Engineering, 2020,11(4):37−43. (袁昌望, 黄加进, 李声慈, 等. 模具及温度对1500 MPa级热成形钢组织性能的影响[J]. 有色金属科学与工程, 2020,11(4):37−43.
    [7] Liu Anmin, Feng Yi, Zhao Yan, et al. Effect of niobium and vanadium micro-alloying on microstructure and property of 22MnB5 hot press forming steel[J]. Materials for Mechanical Engineering, 2019,43(5):34−37,53. (刘安民, 冯毅, 赵岩, 等. 铌钒微合金化对22MnB5热成形钢显微组织与性能的影响[J]. 机械工程材料, 2019,43(5):34−37,53. doi: 10.11973/jxgccl201905007
    [8] Jia Lihui, Li Yongliang. Effects of Nb and Ti on the impact toughness of high strength structure steel Q690D[J]. Nonferrous Metals Science and Engineering, 2020,11(1):34−38. (贾丽慧, 李永亮. Nb、Ti微合金元素对高强结构钢Q690D冲击韧性的影响[J]. 有色金属科学与工程, 2020,11(1):34−38.
    [9] Zheng Haoyong, Wang Meng, Wang Xiuxing, et al. Analysis of heterogeneous nucleation on rough surfaces based on Wenzel model[J]. ACTA Physica Sinica, 2011,60(6):664021−664026. (郑浩勇, 王猛, 王修星, 等. 基于Wenzel模型的粗糙界面异质形核分析[J]. 物理学报, 2011,60(6):664021−664026.
    [10] Sun Jing, Chen Meiling, Yang Jun, et al. Effects of B+ steel wall thickness on mechanical properties[J]. Hot Working Technology, 2009,38(23):42−44. (孙晶, 陈美玲, 杨军, 等. 货车转向架用B+钢壁厚对力学性能影响的研究[J]. 热加工工艺, 2009,38(23):42−44. doi: 10.3969/j.issn.1001-3814.2009.23.013
    [11] Narayanasamy R, Parthasarathi N L, Narayanan C S. Effect of microstructure on void nucleation and coalescence during forming of three different HSLA steel sheets under different stress conditions [J]. Materials & Design. 2009, 30(4): 1310-1324.
    [12] González R, García J O, Barbés M A, et al. Ultrafine grained HSLA steels for cold forming[J]. Journal of Iron & Steel Research, 2010,(10):53−59.
    [13] Gao B, Chen X, Pan Z, et al. A high-strength heterogeneous structural dual-phase steel[J]. Journal of Materials Science, 2019,54(19):66−72.
    [14] Georgy V, Hideaki S. Effect of primary deoxidation products of Al2O3, ZrO2, Ce2O3 and MgO on TiN precipitation in Fe-10%Ni alloy[J]. ISIJ International, 2001,41(7):748−756. doi: 10.2355/isijinternational.41.748
    [15] Wen B, Song B, Pan N, et al. Effect of SiMg alloy on inclusions and microstructures of 16Mn steel[J]. Ironmaking & Steelmaking, 2013,38(8):577−583.
    [16] Ge Yunzong, Yan Huicheng, Wang Jianjun, et al. Formation and control of CaS inclusion in gear steel 20CrMnTiH1[J]. Steelmaking, 2013,29(3):23−27. (葛允宗, 颜慧成, 王建军, 等. 20CrMnTiH1齿轮钢中CaS夹杂的形成与控制[J]. 炼钢, 2013,29(3):23−27.
    [17] Lv Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019,40(3):93−98. (吕勇, 彭军, 蔡长焜, 等. 稀土铈对钢中含钛夹杂物析出行为的研究[J]. 钢铁钒钛, 2019,40(3):93−98.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  126
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回