Influence of rare earth modifier on the nonmetallic inclusion morphology and size distribution about hot stamping
-
摘要: 利用光学显微镜、扫描电镜等手段研究了稀土变质剂对1 500 MPa级热冲压成型用钢夹杂物形貌、尺寸和分布状态的影响,并在此基础上对钢的显微组织和常温塑性进行了对比评价。结果显示:添加稀土变质剂后,铸坯中心偏析现象消失;与未进行变质剂处理的钢相比,粗大的D类质点夹杂物显著降低,但D类夹杂的密度并未减少;产品的显微组织得到有效细化,常温塑性显著提高,对材料性能提升效果显著。Abstract: The influence of rare earth modifier on nonmetallic inclusion morphology and size distribution of 1500 MPa grade hot stamping steel were investigated by optical microscope and scanning electron microscope. And the microstructure and plastic property of resulted steel at room temperature were compared. The results showed that macro segregation disappeared in the rare earth modifier treated steel. After rare earth modifier treatment, the size of D-type particle inclusion decreased obviously, however, the density of inclusion kept increasing. With the rare earth modifier treatment, the microstructure was refined apparently and the plastic property at room temperature was improved.
-
Key words:
- hot stamping steel /
- rare earth /
- nonmetallic inclusion /
- morphology /
- size
-
表 1 试验钢的主要化学成分
Table 1. Main chemical compositions of experimental steels
% 序号 C Mn S P Si N Als Cr Ti Ca La Ce 1# 0.24 1.30 0.0020 0.0110 0.26 0.0038 0.047 0. 21 0.037 0.0020 2# 0.22 1.35 0.0030 0.0140 0.28 0.0040 0.040 0.20 0.032 0.0021 0.0010 0.0016 表 2 稀土变质剂对热轧钢卷非金属夹杂物类型和评级的影响
Table 2. Effect of rare earth modifier on the type and grade of nonmetallic inclusion
钢种 夹杂物评级/级 A B C D-细系 D-粗系 Ds 1# 1.0 0.5 0.5 1.5 2.0 1.0 2# 0.5 0.5 1.0 2.0 0.5 0 -
[1] Jiang Haitao, Tang Di, Mi Zhenli, et al. Influence of processing parameters of hot stamping to mechanical properties of martensite steel and segregation of boron[J]. Journal of Materials Engineering, 2010,52(2):69−73. (江海涛, 唐荻, 米振莉, 等. 工艺参数对热冲压成型钢组织性能及硼偏聚的影响[J]. 材料工程, 2010,52(2):69−73. doi: 10.3969/j.issn.1001-4381.2010.02.016 [2] Tan Hailin, Gui Zhongxiang, Zhang Yisheng. Integrity alteration of Al-Si coating morphology during hot stamping[J]. Journal of Plasticity Engineering, 2017,24(4):89−94. (谭海林, 桂中祥, 张宜生. Al-Si镀层在热冲压成形中的形貌完整性变化[J]. 塑性工程学报, 2017,24(4):89−94. [3] Wang Jiying, Zhu Shuaishuai, Li Qi, et al. Effect of quenching temperature on microstructure and properties of thermoformed 22MnB5 martensitic steel[J]. Heat Treatment of Metals, 2018,43(9):75−79. (王吉应, 朱帅帅, 李琦, 等. 淬火温度对热成形22MnB5马氏体钢组织及性能的影响[J]. 金属热处理, 2018,43(9):75−79. [4] Qiu Xiaopan, Zhang Jie, Jiang Sheming, et al. Effect of stamping temperature on cracks in coating of galvanized 22MnB5 steel plates[J]. Corrosion and Protection, 2018,39(4):302−306. (邱肖盼, 张杰, 江社明, 等. 冲压温度对镀锌22MnB5钢板镀层中裂纹的影响[J]. 腐蚀与防护, 2018,39(4):302−306. [5] Weimin Z, Dongxuan X, Yanhong C. Experimental investigation of the effect of the material damage induced in sheet metal forming process on the service performance of 22MnB5 steel[J]. Chinese Journal of Mechanical Engineering, 2016,29(4):747−755. doi: 10.3901/CJME.2016.0513.065 [6] Yuan Changwang, Huang Jiajin, Li Shengci, et al. Influence of die and temperature on microstructure and properties of 1500 MPa thermoforming steel[J]. Nonferrous Metals Science and Engineering, 2020,11(4):37−43. (袁昌望, 黄加进, 李声慈, 等. 模具及温度对1500 MPa级热成形钢组织性能的影响[J]. 有色金属科学与工程, 2020,11(4):37−43. [7] Liu Anmin, Feng Yi, Zhao Yan, et al. Effect of niobium and vanadium micro-alloying on microstructure and property of 22MnB5 hot press forming steel[J]. Materials for Mechanical Engineering, 2019,43(5):34−37,53. (刘安民, 冯毅, 赵岩, 等. 铌钒微合金化对22MnB5热成形钢显微组织与性能的影响[J]. 机械工程材料, 2019,43(5):34−37,53. doi: 10.11973/jxgccl201905007 [8] Jia Lihui, Li Yongliang. Effects of Nb and Ti on the impact toughness of high strength structure steel Q690D[J]. Nonferrous Metals Science and Engineering, 2020,11(1):34−38. (贾丽慧, 李永亮. Nb、Ti微合金元素对高强结构钢Q690D冲击韧性的影响[J]. 有色金属科学与工程, 2020,11(1):34−38. [9] Zheng Haoyong, Wang Meng, Wang Xiuxing, et al. Analysis of heterogeneous nucleation on rough surfaces based on Wenzel model[J]. ACTA Physica Sinica, 2011,60(6):664021−664026. (郑浩勇, 王猛, 王修星, 等. 基于Wenzel模型的粗糙界面异质形核分析[J]. 物理学报, 2011,60(6):664021−664026. [10] Sun Jing, Chen Meiling, Yang Jun, et al. Effects of B+ steel wall thickness on mechanical properties[J]. Hot Working Technology, 2009,38(23):42−44. (孙晶, 陈美玲, 杨军, 等. 货车转向架用B+钢壁厚对力学性能影响的研究[J]. 热加工工艺, 2009,38(23):42−44. doi: 10.3969/j.issn.1001-3814.2009.23.013 [11] Narayanasamy R, Parthasarathi N L, Narayanan C S. Effect of microstructure on void nucleation and coalescence during forming of three different HSLA steel sheets under different stress conditions [J]. Materials & Design. 2009, 30(4): 1310-1324. [12] González R, García J O, Barbés M A, et al. Ultrafine grained HSLA steels for cold forming[J]. Journal of Iron & Steel Research, 2010,(10):53−59. [13] Gao B, Chen X, Pan Z, et al. A high-strength heterogeneous structural dual-phase steel[J]. Journal of Materials Science, 2019,54(19):66−72. [14] Georgy V, Hideaki S. Effect of primary deoxidation products of Al2O3, ZrO2, Ce2O3 and MgO on TiN precipitation in Fe-10%Ni alloy[J]. ISIJ International, 2001,41(7):748−756. doi: 10.2355/isijinternational.41.748 [15] Wen B, Song B, Pan N, et al. Effect of SiMg alloy on inclusions and microstructures of 16Mn steel[J]. Ironmaking & Steelmaking, 2013,38(8):577−583. [16] Ge Yunzong, Yan Huicheng, Wang Jianjun, et al. Formation and control of CaS inclusion in gear steel 20CrMnTiH1[J]. Steelmaking, 2013,29(3):23−27. (葛允宗, 颜慧成, 王建军, 等. 20CrMnTiH1齿轮钢中CaS夹杂的形成与控制[J]. 炼钢, 2013,29(3):23−27. [17] Lv Yong, Peng Jun, Cai Changkun, et al. Rare earth Ce on thermodynamics of titanium containing inclusions in steel and its experimental research[J]. Iron Steel Vanadium Titanium, 2019,40(3):93−98. (吕勇, 彭军, 蔡长焜, 等. 稀土铈对钢中含钛夹杂物析出行为的研究[J]. 钢铁钒钛, 2019,40(3):93−98. -