中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脱硝催化剂载体二氧化钛制备研究进展

李化全 邱贵宝 吕学伟

李化全, 邱贵宝, 吕学伟. 脱硝催化剂载体二氧化钛制备研究进展[J]. 钢铁钒钛, 2022, 43(2): 7-14, 20. doi: 10.7513/j.issn.1004-7638.2022.02.002
引用本文: 李化全, 邱贵宝, 吕学伟. 脱硝催化剂载体二氧化钛制备研究进展[J]. 钢铁钒钛, 2022, 43(2): 7-14, 20. doi: 10.7513/j.issn.1004-7638.2022.02.002
Li Huaquan, Qiu Guibao, Lv Xuewei. Research progress in preparation of titanium dioxide catalyst carrier for denitrification[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 7-14, 20. doi: 10.7513/j.issn.1004-7638.2022.02.002
Citation: Li Huaquan, Qiu Guibao, Lv Xuewei. Research progress in preparation of titanium dioxide catalyst carrier for denitrification[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 7-14, 20. doi: 10.7513/j.issn.1004-7638.2022.02.002

脱硝催化剂载体二氧化钛制备研究进展

doi: 10.7513/j.issn.1004-7638.2022.02.002
详细信息
    作者简介:

    李化全(1977—),男,山东淄博人,在读博士研究生,长期从事钛、钴及其盐类化合物、三元正极材料的制备与表征的产业化研究工作,E-mail: lihuaquan1229@163.com

    通讯作者:

    邱贵宝,博士,教授,主要从事高炉渣高温物理化学、多孔钛合金制备与表征,E-mail: qiuguibao@cqu.edu.cn

  • 中图分类号: TF823,TQ426

Research progress in preparation of titanium dioxide catalyst carrier for denitrification

  • 摘要: 脱硝催化剂载体二氧化钛(TiO2)以其优异的性能在SCR烟气脱硝催化剂行业中得以广泛应用,并成为应用研究的热点。综述了近年来国内外采用液相法和固相法制备脱硝催化剂载体二氧化钛的工艺技术的研究情况和负载活性组分的脱硝催化剂载体二氧化钛的研究情况,比较分析了不同研究工艺制备方法的原理、特点、优缺点和研究进展,展望了脱硝催化剂载体二氧化钛的应用前景。阐明了脱硝催化剂载体TiO2制备中工业化和工程应用中的不足和研究方向,指出了制备方法中依托硫酸法的改进提升获得大比表面积、高活性、低成本等指标的脱硝催化剂载体TiO2粉体依然是研究重点和发展趋势。
  • [1] Xu Jianwen, Wang Jiyuan, Chen Shaohui, et al. Research progress in titanium dioxide in catalytic fields[J]. Modem Chemical Industry, 2011,31(5):21−23. (许建文, 王继元, 陈绍辉, 等. 二氧化钛在催化剂领域的研究进展[J]. 现代化工, 2011,31(5):21−23.
    [2] Nicosia D, Czekaj I, Krocher O, et al. Chemical deactivation of V2O5 -WO3/TiO2 SCR catalysts by additives and impurities from fuels[J]. Lubrication Oils and Ureasolution, 2008,77(3-4):228−236.
    [3] Chen X B, Mao S S. Titanium dioxide nanomaterials synthesis properties modifications and applications[J]. Chemical Reviews, 2007,107(7):2891−2959. doi: 10.1021/cr0500535
    [4] Huang Tao, Zhang Guoliang, Jiang Huabing, et al. Progress in preparation of TiO2 nanoparticles with high performance[J]. Chemical Industry and Engineering Progress, 2010,29(3):498−504. (黄涛, 张国亮, 蒋华兵, 等. 高性能纳米二氧化钛制备技术研究进展[J]. 化工进展, 2010,29(3):498−504.
    [5] Hadjiivanov K I, Klissurski D G. Surface chemistry of titania(anatase) and titania-supported catalysts[J]. Chemical Society Reviews, 1996,25(1):61−69. doi: 10.1039/cs9962500061
    [6] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,5358(238):37−38.
    [7] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull of Environ. Contam. Toxical, 1976,16(6):697−701. doi: 10.1007/BF01685575
    [8] Zhang Hui, Zhang Guoliang, Yang Zhihong, et al. Degradation of azo dye wastewater in a TiO2 photocatalysis and membrane separation hybrid system[J]. Chinese Journal of Catalysis, 2009,30(7):679−684. (张辉, 张国亮, 杨志宏, 等. TiO2光催化/膜分离耦合过程降解偶氮染料废水[J]. 催化学报, 2009,30(7):679−684. doi: 10.3321/j.issn:0253-9837.2009.07.017
    [9] Mahshida S, Askaria M, Ghamsari M S, et al. Mixed-phase TiO2 nanoparaticles preparation using sol-gel method[J]. J. Alloys Compd, 2009,478(1-2):586−589. doi: 10.1016/j.jallcom.2008.11.094
    [10] Mao L Q, Li Q L, Dang H X, et al. Synthesis of nano-crystalline TiO2 with high photoactivity and large specific surface area bysol-gel method[J]. Mater. Res. Bull., 2005,40(2):201−208. doi: 10.1016/j.materresbull.2004.11.001
    [11] Li Y, White T J, Lim S H. Low-temperature synthesis and microstructural control of titania nano-particles[J]. J. Solid State Chem., 2004,177(45):1372−1381.
    [12] Zhang H Z, Finnegan M, Banfield J F. Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature[J]. Nano Lett., 2001,1(2):81−85. doi: 10.1021/nl0055198
    [13] Zhu Y F, Zhang L, Gao C, et al. The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor[J]. J. Mater. Sci., 2000,35(16):4409−4054.
    [14] Neppolian B, Wanf Q, Jung H, et al. Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: characterization, properties and 4-chlorophenol removal application[J]. Ultrason Sonochem., 2008,15(4):649−658. doi: 10.1016/j.ultsonch.2007.09.014
    [15] Kolenko Y V, Garshev A V, Churagulov B R, et al. Photocatalytic activity of sol-gel derived titania converted into nanocrystalline powders by supercritical drying[J]. J. Photochem. Photobiol. A, 2005,172(1):19−26. doi: 10.1016/j.jphotochem.2004.11.004
    [16] Maher E T, Carol L J A, Edward M R, et al. Synthesis of titanium dioxide particles supercritical CO2[J]. The Joumal of Supercritical Fluids, 1996,9(3):172−176. doi: 10.1016/S0896-8446(96)90029-7
    [17] Wang H, Liu P G, Cheng X S, et al. Effect of surfactants on synthesis of TiO2 nano-particles by homogeneous precipitation method[J]. Powder Technol., 2008,188(1):52−54. doi: 10.1016/j.powtec.2008.03.010
    [18] Chen J Y, Zhang G L. Preparation and properties of nano-meter-sized magnetic photocatalyst TiO2/Fe3O4[J]. Abstr. Pap. Amer. Chem. Soc., 2006,231(3):137−141.
    [19] Kim K D, Kim S H, Kim H T. Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles[J]. Coll. Surf. A., 2005,254(1-3):99−105. doi: 10.1016/j.colsurfa.2004.11.033
    [20] Yu J C, Tang H Y, Yu J, et al. Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol-gel and reverse micelle methods[J]. J. Photochem. Photobiol. A, 2002,153(1-3):211−219. doi: 10.1016/S1010-6030(02)00275-7
    [21] Lim K T, Hwang H S, Ryoo W, et al. Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2[J]. Langmuir, 2004,20(6):2466−2471. doi: 10.1021/la035646u
    [22] Chae S Y, Park M K, Lee S K, et al. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films[J]. Chem. Mater., 2003,15(17):3326−3331. doi: 10.1021/cm030171d
    [23] Peng T Y, Zhao D, Dai K, et al. Synthesis of titanium dioxide nanoparticiles with mesoporous anatase wall and high photocatalytic activity[J]. J. Phys. Chem. B, 2005,109(11):4947−4952. doi: 10.1021/jp044771r
    [24] Feng X, Zhai J, Jiang L. The fadrication and switchable superhydrophobicity of TiO2 nanorod films[J]. Angew Chem Int Ed, 2005,44:5115−5118. doi: 10.1002/anie.200501337
    [25] Zhang Y X, Li G H, Jin Y X, et al. Hydrothermal synthesis and photoluminescence of TiO2 nanowires[J]. Chem Phys Lett, 2002,365:300−304. doi: 10.1016/S0009-2614(02)01499-9
    [26] Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube[J]. Langmuir, 1998,14:3160−3163. doi: 10.1021/la9713816
    [27] Wang Y Q, Hu G Q, Duan X F, et al. Microstructure and formation mechanism of titanium dioxide nanotubes[J]. Chem Phys Lettt, 2002,365:427−431. doi: 10.1016/S0009-2614(02)01502-6
    [28] Li G H, Gray K A. Preparation of mixed-phase titanium dioxide nanocomposites via olvothermal processing[J]. Chem. Mater., 2007,19(5):1143−1146. doi: 10.1021/cm061817f
    [29] Ding B, Kim C K, Kim H Y, et al. Titanium dioxide nanofibersnprepared by using electrospinning method[J]. Fiber Polym, 2004,5:105−109. doi: 10.1007/BF02902922
    [30] Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chem Rev, 2007,107:2891−2959. doi: 10.1002/chin.200741216
    [31] Huang W, Tang X, Wang Y, et al. Selective synthesis of anatase and rutile via ultrasound irradiation[J]. Chem Commun, 2000:1415−1416. doi: 10.1039/b003349i
    [32] Corradi A B, Bondioli F, Focher B, et al. Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders[J]. J Am Ceram Soc, 2005,88:2639−2641. doi: 10.1111/j.1551-2916.2005.00474.x
    [33] Gajovic A, Furic K, Tomasic N, et al. Mechanochemical preparation of nanocrystalline TiO2 powders and their behavior at high temperatures[J]. J. Alloys Compd., 2005,398(1−2):188−199. doi: 10.1016/j.jallcom.2005.02.004
    [34] Chen Hua, Tian Congxue, Liu Haibo, et al. Effects of pre-adding water on structure of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2018,39(3):22−23. (陈华, 田从学, 刘海波, 等. 低水量对偏钛酸结构的影响[J]. 钢铁钒钛, 2018,39(3):22−23.
    [35] 倪月琴. 偏钛酸晶型转化的研究[D]. 天津: 天津大学, 2006.

    Ni Yueqin. The study on crystal conversion of hydrated titanium dioxide[D]. Tianjin: Tianjin University, 2006.
    [36] Chong Mengnan, Jin Bo, Chow C W K. Recent developments in photocatalytic water treatment technology: a review[J]. Water Research, 2010,44(10):2997−3027. doi: 10.1016/j.watres.2010.02.039
    [37] Li Dandan, Yao Guangzheng, Liang Guiyan, et al. Preparation of GO/TiO2 composite photocatalyst and treatment of synthetic dye wastewater[J]. Journal of Materials Engineering, 2019,47(12):104−110. (李丹丹, 姚广铮, 梁桂琰, 等. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟废水处理[J]. 材料工程, 2019,47(12):104−110. doi: 10.11868/j.issn.1001-4381.2018.000701
    [38] Sekhar S, Michael J H. Influence of stirrer speed on the precipitation of anatase particles from titanyl sulphate solution[J]. Journal of Crystal Growth, 2001,233(1-2):225−234.
    [39] Zhang Shiying, Zhou Wuyi, Tang Shaoqiu, et al. Preparation of nano-TiO2 powders with metatitanic acid and its photo-catalytic properties[J]. Chemical Engineering, 2006,34(2):60−63. (张世英, 周武艺, 唐绍裘, 等. 偏钛酸制备纳米TiO2粉体及其光催化性能研究[J]. 化学工程, 2006,34(2):60−63. doi: 10.3969/j.issn.1005-9954.2006.02.016
    [40] Wei Shaodong, Yuan Liangzheng, Wang Yuqing. Preparation technology and industrialization production of nanometer TiO2 using metatitanic acid as raw material[J]. Applied Chemical Industry, 2006,35(2):89−91. (魏绍东, 袁良正, 王玉倩. 以偏钛酸为原料制备纳米TiO2的方法与工艺生产[J]. 应用化工, 2006,35(2):89−91. doi: 10.3969/j.issn.1671-3206.2006.02.004
    [41] Guo Qiong, Xiao Gao, Shi Yidong, et al. Preparation of nano-TiO2 using metatitanic acid as raw materials[J]. Textile Auxiliaries, 2010,27(4):29−32. (郭琼, 肖高, 施亦东, 等. 以偏钛酸为原料制备纳米二氧化钛[J]. 印染助剂, 2010,27(4):29−32. doi: 10.3969/j.issn.1004-0439.2010.04.007
    [42] Forzatti P. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A:General, 2001,222(1/2):221−236.
    [43] Inomata M, Miyamoto A, Toshiaki U, et al. Activities of V2O5/TiO2 and V2O5/Al2O3 catalysts for the reaction of NO with NH3 in the presence of O2[J]. Industrial & Engineering Chemistry Product Research & Development, 1982,21:424−428.
    [44] Nicosia D, Czekaj I, Krocher O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution[J]. Applied Catalysis B:Environmental, 2008,77(3/4):228−236.
    [45] Teng H, Hsu Y T. Reduction of NO with NH3 overcarbon catalysts the influence of carbon surfaces structure and the global kinetics[J]. Applide Catalysis B:Environmental, 1999,20(2):145−146. doi: 10.1016/S0926-3373(98)00102-7
    [46] Forzatti P. Prensent status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A:General, 2001,222:221. doi: 10.1016/S0926-860X(01)00832-8
    [47] Chooa S T, Lee Y G, Nama I S, et al. Characteristies of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3[J]. Applied Catalysis A:General, 2000,200:177. doi: 10.1016/S0926-860X(00)00636-0
    [48] Choo S T, Lee Y G, Nan I S, et al. Characteristics of V2O5 supported on sulfated TiO2 for selective catalysts reduction of NO by NH3[J]. Applied Catalysis A: General, 2000,200(1/2):177−188.
    [49] Xu W Q, Yu Y B, He H, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalys[J]. Catalysis conmunications, 2008,9(6):1453−1457.
    [50] Matralis H T, Theret S, Ruwet M, et al. Selective catalvtic reduction of nitric oxide withanmonia using MoO3/TiO2 catalyst structure and activity[J]. Applied Catalysis B Environmental, 1995,5(4):271−281. doi: 10.1016/0926-3373(94)00054-9
    [51] Zhang Jian, Pan Yuanfeng, Zhang Jiajia, et al. De-NOx performance of catalysts prepared from metatitanic acid[J]. Cintemporary Chemical Industry, 2014,43(9):1683−1686. (张建, 潘远凤, 张家佳, 等. 以偏钛酸为原料的催化剂的脱硝性能研究[J]. 当代化工, 2014,43(9):1683−1686. doi: 10.3969/j.issn.1671-0460.2014.09.001
    [52] Zhang Yuting, Shen Jun, Zhang Shao. Anew process to prepare supported coupled-catalyst of V2O5/TiO2 used in SCR reaction of NOx[J]. Chinese Journal of Rare Metals, 2007,31(6):105−108. (张钰婷, 沈俊, 张绍. 用于SCR脱硝的钒钛催化剂的一种新制备方法[J]. 稀有金属, 2007,31(6):105−108.
    [53] Jin R, Liu Y, Wu Z, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study[J]. Chemosphere, 2010,78(9):1160−1166. doi: 10.1016/j.chemosphere.2009.11.049
    [54] Kobayashi M, Miyoshi K. WO3-TiO2 monolithic catalysts for high temperature SCR of NO by NH3 influence of preparation method on steuctural and physical chemical properties activity and durability[J]. Applied Catalysis B Environmental, 2007,72(3/4):253−261.
    [55] Xu Hong, Liao Xin, Qin Jianfeng, et al. Selection research on tungsten salt precursor of titanium tungsten powder used for denitration catalyst[J]. Inorganic Chemicals Industry, 2014,46(5):73−76. (徐鸿, 廖欣, 秦剑锋, 等. 脱硝催化剂专用钛钨粉中钨盐前驱体的选择研究[J]. 无机盐工业, 2014,46(5):73−76. doi: 10.3969/j.issn.1006-4990.2014.05.021
    [56] Cai Kunliang, Zou Jianxin, Lu Chuanjin, et al. Preparation of special catalyst carrier using titanium dioxide as substrate[J]. Mining and Metallurgical Engineering, 2015,35(6):97−100. (蔡坤良, 邹建新, 卢传金, 等. 钛基特种催化剂载体的制备研究[J]. 冶金工程, 2015,35(6):97−100.
  • 加载中
计量
  • 文章访问数:  635
  • HTML全文浏览量:  95
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回