[1] |
Xu Jianwen, Wang Jiyuan, Chen Shaohui, et al. Research progress in titanium dioxide in catalytic fields[J]. Modem Chemical Industry, 2011,31(5):21−23. (许建文, 王继元, 陈绍辉, 等. 二氧化钛在催化剂领域的研究进展[J]. 现代化工, 2011,31(5):21−23.
|
[2] |
Nicosia D, Czekaj I, Krocher O, et al. Chemical deactivation of V2O5 -WO3/TiO2 SCR catalysts by additives and impurities from fuels[J]. Lubrication Oils and Ureasolution, 2008,77(3-4):228−236.
|
[3] |
Chen X B, Mao S S. Titanium dioxide nanomaterials synthesis properties modifications and applications[J]. Chemical Reviews, 2007,107(7):2891−2959. doi: 10.1021/cr0500535
|
[4] |
Huang Tao, Zhang Guoliang, Jiang Huabing, et al. Progress in preparation of TiO2 nanoparticles with high performance[J]. Chemical Industry and Engineering Progress, 2010,29(3):498−504. (黄涛, 张国亮, 蒋华兵, 等. 高性能纳米二氧化钛制备技术研究进展[J]. 化工进展, 2010,29(3):498−504.
|
[5] |
Hadjiivanov K I, Klissurski D G. Surface chemistry of titania(anatase) and titania-supported catalysts[J]. Chemical Society Reviews, 1996,25(1):61−69. doi: 10.1039/cs9962500061
|
[6] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,5358(238):37−38.
|
[7] |
Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull of Environ. Contam. Toxical, 1976,16(6):697−701. doi: 10.1007/BF01685575
|
[8] |
Zhang Hui, Zhang Guoliang, Yang Zhihong, et al. Degradation of azo dye wastewater in a TiO2 photocatalysis and membrane separation hybrid system[J]. Chinese Journal of Catalysis, 2009,30(7):679−684. (张辉, 张国亮, 杨志宏, 等. TiO2光催化/膜分离耦合过程降解偶氮染料废水[J]. 催化学报, 2009,30(7):679−684. doi: 10.3321/j.issn:0253-9837.2009.07.017
|
[9] |
Mahshida S, Askaria M, Ghamsari M S, et al. Mixed-phase TiO2 nanoparaticles preparation using sol-gel method[J]. J. Alloys Compd, 2009,478(1-2):586−589. doi: 10.1016/j.jallcom.2008.11.094
|
[10] |
Mao L Q, Li Q L, Dang H X, et al. Synthesis of nano-crystalline TiO2 with high photoactivity and large specific surface area bysol-gel method[J]. Mater. Res. Bull., 2005,40(2):201−208. doi: 10.1016/j.materresbull.2004.11.001
|
[11] |
Li Y, White T J, Lim S H. Low-temperature synthesis and microstructural control of titania nano-particles[J]. J. Solid State Chem., 2004,177(45):1372−1381.
|
[12] |
Zhang H Z, Finnegan M, Banfield J F. Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature[J]. Nano Lett., 2001,1(2):81−85. doi: 10.1021/nl0055198
|
[13] |
Zhu Y F, Zhang L, Gao C, et al. The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor[J]. J. Mater. Sci., 2000,35(16):4409−4054.
|
[14] |
Neppolian B, Wanf Q, Jung H, et al. Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: characterization, properties and 4-chlorophenol removal application[J]. Ultrason Sonochem., 2008,15(4):649−658. doi: 10.1016/j.ultsonch.2007.09.014
|
[15] |
Kolenko Y V, Garshev A V, Churagulov B R, et al. Photocatalytic activity of sol-gel derived titania converted into nanocrystalline powders by supercritical drying[J]. J. Photochem. Photobiol. A, 2005,172(1):19−26. doi: 10.1016/j.jphotochem.2004.11.004
|
[16] |
Maher E T, Carol L J A, Edward M R, et al. Synthesis of titanium dioxide particles supercritical CO2[J]. The Joumal of Supercritical Fluids, 1996,9(3):172−176. doi: 10.1016/S0896-8446(96)90029-7
|
[17] |
Wang H, Liu P G, Cheng X S, et al. Effect of surfactants on synthesis of TiO2 nano-particles by homogeneous precipitation method[J]. Powder Technol., 2008,188(1):52−54. doi: 10.1016/j.powtec.2008.03.010
|
[18] |
Chen J Y, Zhang G L. Preparation and properties of nano-meter-sized magnetic photocatalyst TiO2/Fe3O4[J]. Abstr. Pap. Amer. Chem. Soc., 2006,231(3):137−141.
|
[19] |
Kim K D, Kim S H, Kim H T. Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles[J]. Coll. Surf. A., 2005,254(1-3):99−105. doi: 10.1016/j.colsurfa.2004.11.033
|
[20] |
Yu J C, Tang H Y, Yu J, et al. Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol-gel and reverse micelle methods[J]. J. Photochem. Photobiol. A, 2002,153(1-3):211−219. doi: 10.1016/S1010-6030(02)00275-7
|
[21] |
Lim K T, Hwang H S, Ryoo W, et al. Synthesis of TiO2 nanoparticles utilizing hydrated reverse micelles in CO2[J]. Langmuir, 2004,20(6):2466−2471. doi: 10.1021/la035646u
|
[22] |
Chae S Y, Park M K, Lee S K, et al. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films[J]. Chem. Mater., 2003,15(17):3326−3331. doi: 10.1021/cm030171d
|
[23] |
Peng T Y, Zhao D, Dai K, et al. Synthesis of titanium dioxide nanoparticiles with mesoporous anatase wall and high photocatalytic activity[J]. J. Phys. Chem. B, 2005,109(11):4947−4952. doi: 10.1021/jp044771r
|
[24] |
Feng X, Zhai J, Jiang L. The fadrication and switchable superhydrophobicity of TiO2 nanorod films[J]. Angew Chem Int Ed, 2005,44:5115−5118. doi: 10.1002/anie.200501337
|
[25] |
Zhang Y X, Li G H, Jin Y X, et al. Hydrothermal synthesis and photoluminescence of TiO2 nanowires[J]. Chem Phys Lett, 2002,365:300−304. doi: 10.1016/S0009-2614(02)01499-9
|
[26] |
Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube[J]. Langmuir, 1998,14:3160−3163. doi: 10.1021/la9713816
|
[27] |
Wang Y Q, Hu G Q, Duan X F, et al. Microstructure and formation mechanism of titanium dioxide nanotubes[J]. Chem Phys Lettt, 2002,365:427−431. doi: 10.1016/S0009-2614(02)01502-6
|
[28] |
Li G H, Gray K A. Preparation of mixed-phase titanium dioxide nanocomposites via olvothermal processing[J]. Chem. Mater., 2007,19(5):1143−1146. doi: 10.1021/cm061817f
|
[29] |
Ding B, Kim C K, Kim H Y, et al. Titanium dioxide nanofibersnprepared by using electrospinning method[J]. Fiber Polym, 2004,5:105−109. doi: 10.1007/BF02902922
|
[30] |
Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chem Rev, 2007,107:2891−2959. doi: 10.1002/chin.200741216
|
[31] |
Huang W, Tang X, Wang Y, et al. Selective synthesis of anatase and rutile via ultrasound irradiation[J]. Chem Commun, 2000:1415−1416. doi: 10.1039/b003349i
|
[32] |
Corradi A B, Bondioli F, Focher B, et al. Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders[J]. J Am Ceram Soc, 2005,88:2639−2641. doi: 10.1111/j.1551-2916.2005.00474.x
|
[33] |
Gajovic A, Furic K, Tomasic N, et al. Mechanochemical preparation of nanocrystalline TiO2 powders and their behavior at high temperatures[J]. J. Alloys Compd., 2005,398(1−2):188−199. doi: 10.1016/j.jallcom.2005.02.004
|
[34] |
Chen Hua, Tian Congxue, Liu Haibo, et al. Effects of pre-adding water on structure of metatitanic acid[J]. Iron Steel Vanadium Titanium, 2018,39(3):22−23. (陈华, 田从学, 刘海波, 等. 低水量对偏钛酸结构的影响[J]. 钢铁钒钛, 2018,39(3):22−23.
|
[35] |
倪月琴. 偏钛酸晶型转化的研究[D]. 天津: 天津大学, 2006.Ni Yueqin. The study on crystal conversion of hydrated titanium dioxide[D]. Tianjin: Tianjin University, 2006.
|
[36] |
Chong Mengnan, Jin Bo, Chow C W K. Recent developments in photocatalytic water treatment technology: a review[J]. Water Research, 2010,44(10):2997−3027. doi: 10.1016/j.watres.2010.02.039
|
[37] |
Li Dandan, Yao Guangzheng, Liang Guiyan, et al. Preparation of GO/TiO2 composite photocatalyst and treatment of synthetic dye wastewater[J]. Journal of Materials Engineering, 2019,47(12):104−110. (李丹丹, 姚广铮, 梁桂琰, 等. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟废水处理[J]. 材料工程, 2019,47(12):104−110. doi: 10.11868/j.issn.1001-4381.2018.000701
|
[38] |
Sekhar S, Michael J H. Influence of stirrer speed on the precipitation of anatase particles from titanyl sulphate solution[J]. Journal of Crystal Growth, 2001,233(1-2):225−234.
|
[39] |
Zhang Shiying, Zhou Wuyi, Tang Shaoqiu, et al. Preparation of nano-TiO2 powders with metatitanic acid and its photo-catalytic properties[J]. Chemical Engineering, 2006,34(2):60−63. (张世英, 周武艺, 唐绍裘, 等. 偏钛酸制备纳米TiO2粉体及其光催化性能研究[J]. 化学工程, 2006,34(2):60−63. doi: 10.3969/j.issn.1005-9954.2006.02.016
|
[40] |
Wei Shaodong, Yuan Liangzheng, Wang Yuqing. Preparation technology and industrialization production of nanometer TiO2 using metatitanic acid as raw material[J]. Applied Chemical Industry, 2006,35(2):89−91. (魏绍东, 袁良正, 王玉倩. 以偏钛酸为原料制备纳米TiO2的方法与工艺生产[J]. 应用化工, 2006,35(2):89−91. doi: 10.3969/j.issn.1671-3206.2006.02.004
|
[41] |
Guo Qiong, Xiao Gao, Shi Yidong, et al. Preparation of nano-TiO2 using metatitanic acid as raw materials[J]. Textile Auxiliaries, 2010,27(4):29−32. (郭琼, 肖高, 施亦东, 等. 以偏钛酸为原料制备纳米二氧化钛[J]. 印染助剂, 2010,27(4):29−32. doi: 10.3969/j.issn.1004-0439.2010.04.007
|
[42] |
Forzatti P. Present status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A:General, 2001,222(1/2):221−236.
|
[43] |
Inomata M, Miyamoto A, Toshiaki U, et al. Activities of V2O5/TiO2 and V2O5/Al2O3 catalysts for the reaction of NO with NH3 in the presence of O2[J]. Industrial & Engineering Chemistry Product Research & Development, 1982,21:424−428.
|
[44] |
Nicosia D, Czekaj I, Krocher O. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution[J]. Applied Catalysis B:Environmental, 2008,77(3/4):228−236.
|
[45] |
Teng H, Hsu Y T. Reduction of NO with NH3 overcarbon catalysts the influence of carbon surfaces structure and the global kinetics[J]. Applide Catalysis B:Environmental, 1999,20(2):145−146. doi: 10.1016/S0926-3373(98)00102-7
|
[46] |
Forzatti P. Prensent status and perspectives in de-NOx SCR catalysis[J]. Applied Catalysis A:General, 2001,222:221. doi: 10.1016/S0926-860X(01)00832-8
|
[47] |
Chooa S T, Lee Y G, Nama I S, et al. Characteristies of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3[J]. Applied Catalysis A:General, 2000,200:177. doi: 10.1016/S0926-860X(00)00636-0
|
[48] |
Choo S T, Lee Y G, Nan I S, et al. Characteristics of V2O5 supported on sulfated TiO2 for selective catalysts reduction of NO by NH3[J]. Applied Catalysis A: General, 2000,200(1/2):177−188.
|
[49] |
Xu W Q, Yu Y B, He H, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalys[J]. Catalysis conmunications, 2008,9(6):1453−1457.
|
[50] |
Matralis H T, Theret S, Ruwet M, et al. Selective catalvtic reduction of nitric oxide withanmonia using MoO3/TiO2 catalyst structure and activity[J]. Applied Catalysis B Environmental, 1995,5(4):271−281. doi: 10.1016/0926-3373(94)00054-9
|
[51] |
Zhang Jian, Pan Yuanfeng, Zhang Jiajia, et al. De-NOx performance of catalysts prepared from metatitanic acid[J]. Cintemporary Chemical Industry, 2014,43(9):1683−1686. (张建, 潘远凤, 张家佳, 等. 以偏钛酸为原料的催化剂的脱硝性能研究[J]. 当代化工, 2014,43(9):1683−1686. doi: 10.3969/j.issn.1671-0460.2014.09.001
|
[52] |
Zhang Yuting, Shen Jun, Zhang Shao. Anew process to prepare supported coupled-catalyst of V2O5/TiO2 used in SCR reaction of NOx[J]. Chinese Journal of Rare Metals, 2007,31(6):105−108. (张钰婷, 沈俊, 张绍. 用于SCR脱硝的钒钛催化剂的一种新制备方法[J]. 稀有金属, 2007,31(6):105−108.
|
[53] |
Jin R, Liu Y, Wu Z, et al. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study[J]. Chemosphere, 2010,78(9):1160−1166. doi: 10.1016/j.chemosphere.2009.11.049
|
[54] |
Kobayashi M, Miyoshi K. WO3-TiO2 monolithic catalysts for high temperature SCR of NO by NH3 influence of preparation method on steuctural and physical chemical properties activity and durability[J]. Applied Catalysis B Environmental, 2007,72(3/4):253−261.
|
[55] |
Xu Hong, Liao Xin, Qin Jianfeng, et al. Selection research on tungsten salt precursor of titanium tungsten powder used for denitration catalyst[J]. Inorganic Chemicals Industry, 2014,46(5):73−76. (徐鸿, 廖欣, 秦剑锋, 等. 脱硝催化剂专用钛钨粉中钨盐前驱体的选择研究[J]. 无机盐工业, 2014,46(5):73−76. doi: 10.3969/j.issn.1006-4990.2014.05.021
|
[56] |
Cai Kunliang, Zou Jianxin, Lu Chuanjin, et al. Preparation of special catalyst carrier using titanium dioxide as substrate[J]. Mining and Metallurgical Engineering, 2015,35(6):97−100. (蔡坤良, 邹建新, 卢传金, 等. 钛基特种催化剂载体的制备研究[J]. 冶金工程, 2015,35(6):97−100.
|