留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Ti-Si-Fe合金与B粉的TiB2熔盐法合成制备研究

程登峰 张锦化 王景然 柯昌明

程登峰, 张锦化, 王景然, 柯昌明. 基于Ti-Si-Fe合金与B粉的TiB2熔盐法合成制备研究[J]. 钢铁钒钛, 2022, 43(2): 48-55. doi: 10.7513/j.issn.1004-7638.2022.02.008
引用本文: 程登峰, 张锦化, 王景然, 柯昌明. 基于Ti-Si-Fe合金与B粉的TiB2熔盐法合成制备研究[J]. 钢铁钒钛, 2022, 43(2): 48-55. doi: 10.7513/j.issn.1004-7638.2022.02.008
Cheng Dengfeng, Zhang Jinhua, Wang Jingran, Ke Changming. Molten salt assisted preparation of TiB2 powder from Ti-Si-Fe and B[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 48-55. doi: 10.7513/j.issn.1004-7638.2022.02.008
Citation: Cheng Dengfeng, Zhang Jinhua, Wang Jingran, Ke Changming. Molten salt assisted preparation of TiB2 powder from Ti-Si-Fe and B[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 48-55. doi: 10.7513/j.issn.1004-7638.2022.02.008

基于Ti-Si-Fe合金与B粉的TiB2熔盐法合成制备研究

doi: 10.7513/j.issn.1004-7638.2022.02.008
基金项目: 国家十一五重点支撑计划项目(2006BAB02B02);国家十二五科技支撑计划项目(2011BAB05B05);攀枝花市科技局重大科技攻关计划项目(2008CY-G-1)。
详细信息
    作者简介:

    程登峰(1983—),男,湖北天门人,博士生,长期从事陶瓷及其复合材料的基础研究工作,E-mail: amicay@163.com

    通讯作者:

    柯昌明(1955—),男,博士,教授,从事非氧化物陶瓷及耐火材料的研究工作,E-mail: kechangming@wust.edu.cn

  • 中图分类号: TF823,TQ174.4

Molten salt assisted preparation of TiB2 powder from Ti-Si-Fe and B

  • 摘要: 以从高钛型高炉渣中提取的Ti-Si-Fe合金和无定形硼粉为原料,在NaCl-KCl熔盐中合成了TiB2粉体,研究了反应温度、保温时间、熔盐量、B/Ti摩尔比对反应进程的影响。结果表明:提高反应温度或延长保温时间均能促进反应进行,在850 ℃时开始有TiB2生成,1100 ℃时反应完全。熔盐有促进反应过程的作用。元素分布表明,含Fe的颗粒同时含Si,这与产物FeSi2相对应;大多数颗粒同时含有Si、Ti、B,说明在这些颗粒中产物TiB2和Si是伴生在一起的;少数颗粒只含有Ti、B,对应产物TiB2。产物颗粒形貌有两种,一种颗粒表面呈龟裂状,有裂缝或微米级孔洞与颗粒内部相连,这种颗粒同时含有TiB2、Si或FeSi2;另一种颗粒由片状TiB2组成。Ti-Si-Fe合金与B在熔盐中的反应机制为:在熔盐促进作用下,含钛物中的Ti与B反应生成TiB2,释放出Si及FeSi2,大部分TiB2以Si、FeSi2为骨架形核并长大,从而维持了颗粒原有形貌,少量TiB2在熔盐中形核并长大形成片状TiB2的聚集体。合金相与B反应完全的先后顺序依次为:Ti5Si3、TiSi、TiFeSi2和TiSi2
  • 图  1  Ti-Si-Fe合金的XRD谱

    Figure  1.  The XRD pattern of Ti-Si-Fe alloy

    图  2  Ti-Si-Fe合金与B在不同温度下反应4 h后产物的XRD谱

    Figure  2.  XRD patterns of samples prepared by Ti-Si-Fe alloy reacting with B at different firing temperature for 4 h

    图  3  950 ℃保温不同时间下产物的XRD谱

    Figure  3.  XRD patterns of samples prepared at 950 ℃ for different dwell time

    图  4  1100 ℃保温不同时间下产物的XRD谱

    Figure  4.  XRD patterns of samples prepared at 1 100 ℃ for different dwell time

    图  5  不同熔盐/反应物质量比下,950 ℃反应1 h后产物的XRD谱

    Figure  5.  XRD patterns of samples prepared at 950 ℃ for 1 h with different mass ratios of salt to reactant

    图  6  不同熔盐/反应物质量比下,1100 ℃反应4 h后产物的XRD谱

    Figure  6.  XRD patterns of samples prepared at 1 100 ℃ for 4 h with different mass ratios of salt to reactant

    图  7  不同B/Ti原子比下,1100 ℃反应4 h后产物的XRD谱

    Figure  7.  XRD patterns of samples prepared at 1 100 ℃ for 4 h with different atomic ratios of B to Ti

    图  8  熔盐/反应物比例2.5,1100 ℃反应1 h产物粉末元素分布

    Figure  8.  Sample element distribution firing at 1 100 ℃ for 1h with 2.5 of mass ration of salt to reactant

    图  9  Ti-Si-Fe合金与B粉1100 ℃保温4 h后反应产物的SEM显微形貌

    (a) Ti-Si-Fe合金颗粒;(b)~(f) 反应产物颗粒

    Figure  9.  The SEM microtopography of sample prepared at 1100 ℃ for 4 h

    图  10  Ti-Si-Fe合金与B粉在熔盐中反应的过程示意

    Figure  10.  Schematic reaction process of Ti-Si-Fe alloy and B powder in molten salt

    表  1  Ti-Si-Fe合金粉的化学成分

    Table  1.   Chemical compositions of Ti-Si-Fe alloy powder %

    TiSiFeAl其他
    43.8041.2610.553.11.29
    下载: 导出CSV

    表  2  试验参数

    Table  2.   Experimental parameters

    试验目的反应温度/℃保温时间/hB/Ti摩尔比熔盐/反应物
    质量比
    考察温度对反应的影响800、850、950、1000、1050、11004.02.12.5
    考察保温时间对反应的影响950、11001.0、2.5、
    4.0、5.5
    2.12.5
    考察熔盐/反应物
    质量比对反应的影响
    950、11001.0、4.02.10、1.5、2.5、3.5
    考察B/Ti摩尔比
    对反应的影响
    11004.02.0、2.1、2.2、2.32.5
    下载: 导出CSV
  • [1] Ma Junwei, Sui Zhitong, Chen Bingchen. The comprehensive utilization of the tirannium-containing blast slag of Panzhihua Iron & Steel Co.[J]. Metal Mine, 1999,10:42−45. (马俊伟, 隋智通, 陈炳辰. 攀钢含钛高炉渣的综合利用[J]. 金属矿山, 1999,10:42−45.
    [2] Xu Ying, Li Dandan, Yang Shanshan, et al. Research progress of comprehensive utilization of Ti-bearing blast furnace slag[J]. Multipurpose Utilization of Mineral Resources, 2021,(1):23−31. (许莹, 李单单, 杨姗姗, 等. 含钛高炉渣综合利用研究进展[J]. 矿产综合利用, 2021,(1):23−31. doi: 10.3969/j.issn.1000-6532.2021.01.004
    [3] Peng Yi. Development of technologies for recovering titanium from pangang BF slag[J]. Titanium Industry Progress, 2005,22(3):44−49. (彭毅. 攀钢高炉渣提钛技术进展[J]. 钛工业进展, 2005,22(3):44−49. doi: 10.3969/j.issn.1009-9964.2005.03.012
    [4] 柯昌明, 李楠. 利用含钛炉渣制备钛及钛合金的方法: 中国, ZL200510019664.3[P]. 2005-10-26.

    Ke Changming, Li Nan. Method of preparing titanium and titanium alloy using titanium containing furnace clinker: China, ZL200510019664.3[P]. 2005-10-26.
    [5] 柯昌明, 韩兵强, 李楠. 一种铝酸盐水泥及其制备方法: 中国, ZL200910060792.0[P]. 2009-02-19.

    Ke Changming, Han Bingqiang, Li Nan. Aluminate cement and preparation thereof: China, ZL200910060792.0[P]. 2009-02-19.
    [6] 柯昌明, 韩兵强, 李楠, 等. 一种铁铝酸盐水泥及其制备方法: 中国, ZL201010150254.3[P]. 2010-04-14.

    Ke Changming, Han Bingqiang, Li Nan, et al. Aluminoferriate cement and preparation method thereof: China, ZL201010150254.3[P]. 2010-04-14.
    [7] 柯昌明, 吴海杰, 韩兵强, 等. 一种钒钛硅铁合金的制备方法: 中国, ZL201410132790.9[P]. 2014-02-03.

    Ke Changming, Wu Haijie, Han Bingqiang, et al. Preparation method for vanadium-titanium-silicon-iron alloy: China, ZL201410132790.9[P]. 2014-02-03.
    [8] Han Bingqing, Wang Peng, Ke Changming, et al. Hydration behavior of spinel containing high alumina cement from high titania blast furnace slag[J]. Cement & Concrete Research, 2016,79:257−264.
    [9] 柯昌明, 刘学新, 韩兵强, 等. 高钛型高炉渣环境友好资源化高效综合利用研究[C]//第十一届中国钢铁年会论文集. 北京: 冶金工业出版社, 2017: 1115−1123.

    Ke Changming, Liu Xuexin, Han Bingqiang, et al. Eco-efficient titanium-bearing blast furnace slag recycling[C]//Proceedings of the 11th CSM Steel Congress. Beijing: Metallurgical Industry Press, 2017: 1115−1123.
    [10] Wang Jingran, Ke Changming, Zhang Jinhua. Effect of Ti-bearing blast furnace slag on hydration properties of portland cement[J]. Bulletin of the Chinese Ceramic Society, 2020,39(5):1511−1516. (王景然, 柯昌明, 张锦化. 提钛尾渣对硅酸盐水泥水化性能的影响[J]. 硅酸盐通报, 2020,39(5):1511−1516.
    [11] 柯昌明, 李雪, 韩兵强. 以Ti-Si-Fe合金为原料的TiC材料及其制备方法: 中国, 201110089361.4[P]. 2011-04-11.

    Ke Changming, Li Xue, Han Bingqiang. TiC material with Ti-Si-Fe alloy as raw material and preparation method : China, 201110089361.4[P]. 2011-04-11.
    [12] Zhang Jinhua, Xiong Si, Ke Changming, et al. Synthesis and reaction mechanism of Ti3SiC2 by molten salt method from Ti-Si-Fe alloy[J]. Key Engineering Materials, 2017,768:159−166.
    [13] Ma Li, Yu Jincheng, Guo Xue, et al. Preparation and sintering of ultrafine TiB2 powders[J]. Ceramics International, 2018,44:4491−4495. doi: 10.1016/j.ceramint.2017.12.009
    [14] Karthiselva N S, Murty B S, Bakshi Srinivasa R. Low temperature synthesis of dense TiB2 compacts by reaction spark plasma sintering[J]. Int. J. Refract. Met. Hard Mater., 2015,48:201−210. doi: 10.1016/j.ijrmhm.2014.09.015
    [15] Rabiezadeh A, Hadian A M, Ataie A. Synthesis and sintering of TiB2 nanoparticles[J]. Ceramics International, 2014,40(10):15775−15782. doi: 10.1016/j.ceramint.2014.07.102
    [16] Tetsushi Matsuda. Synthesis and sintering of TiC-TiB2 composite powders[J]. Materials Today Communications, 2020,25:101457. doi: 10.1016/j.mtcomm.2020.101457
    [17] Marina Vlasova, Mykola Kakazey, Pedro Antonio Marquez Aguilar, et al. Processes connected with local laser heating of TiB2 armor ceramics[J]. Science of Sintering, 2019,51(2):125−134. doi: 10.2298/SOS1902125V
    [18] Alvar F Sajedi, Heydari M, Kazemzadeh A, et al. Al2O3-TiB2 nanocomposite coating deposition on titanium by air plasma spraying[J]. Materials Today: Proceedings, 2018,5(7, Part 3):15739−15743.
    [19] Jerzy Smolik, Joanna Kacprzyn´ska-Gołacka, Sylwia Sowa. The analysis of resistance to brittle cracking of tungsten doped TiB2 coatings obtained by magnetron sputtering[J]. Coatings, 2020,10(9):1−10.
    [20] Huang Youguo, Wang Yi, Zhang Xiaohui, et al. Preparation of wettable TiB2-TiB/Ti cathode by electrolytic boronizing for aluminum electrolytic[J]. Journal of Central South University, 2019,26(10):2681−2687. doi: 10.1007/s11771-019-4205-5
    [21] Liu Yue, Huang Chuanzhen, Liu Hanlian, et al. The influence of TiB2 content on high temperature flexural strength and reliability of the developed titanium carbonitride based ceramic tool material[J]. Ceramics International, 2020,46(8):10356−10361. doi: 10.1016/j.ceramint.2020.01.032
    [22] Qin Bo, Zhou Houming, Zeng Guozhang, et al. Mechanical properties and friction and wear performance of TiB2/TiN/WC composite ceramic tool materials[J]. China Ceramics, 2019,55(5):7−13. (覃波, 周后明, 曾国章, 等. TiB2/TiN/WC复合陶瓷刀具材料力学性能及其摩擦磨损性能[J]. 中国陶瓷, 2019,55(5):7−13.
    [23] Fan Xiaowen, Wang Guozhen, Lu Fengxiang. Study on fabrication and tribological properties of TiB2-based cutting tools[J]. Diamond & Abrasives Engineering, 2019,39(6):62−68. (范晓文, 王国珍, 卢凤祥. TiB2基切削刀具的制备和摩擦学性能研究[J]. 金刚石与磨料磨具工程, 2019,39(6):62−68.
    [24] Wang Han, Zhang Haiming, Cui Zhenshan, et al. Compressive response and microstructural evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite[J]. Transactions of Nonferrous Metals Society of China, 2021,31(5):1235−1248. doi: 10.1016/S1003-6326(21)65574-7
    [25] Yu Changfu, Zhang Zhuhui, Yang Lu, et al. Effect of TiB2 reinforced particle content on properties of 6061 aluminum matrix composites[J]. Nonferrous Metals Processing, 2020,49(2):15−18. (于长富, 张祝珲, 杨路, 等. TiB2增强颗粒含量对6061铝基复合材料性能的影响[J]. 有色金属加工, 2020,49(2):15−18.
    [26] Lei Zhenglong, Bi Jiang, Chen Yanbin, et al. Effect of TiB2 content on microstructural features and hardness of TiB2/AA7075 composites manufactured by LMD[J]. Journal of Manufacturing Processes, 2020,53:283−292. doi: 10.1016/j.jmapro.2020.02.036
    [27] Radev D D, Marinov M. Properties of titanium and zirconium diborides obtained by self-propagated high-temperature synthesis[J]. J. Alloy. Compd., 1996,244:48−51. doi: 10.1016/S0925-8388(96)02406-1
    [28] Oghenevweta J E, Wexler D, Calka A. Sequence of phase evolution during mechanically induced self-propagating reaction synthesis of TiB and TiB2 via magnetically controlled ball milling of titanium and boron powders[J]. J. Alloy. Compd., 2017,701:380−391. doi: 10.1016/j.jallcom.2017.01.016
    [29] Tang Wenming, Zheng Zhixiang, Wu Yuchen, et al. Synthesis of TiB2 nanocrystalline powder by mechanical alloying[J]. Transactions of Nonferrous Metals Society of China, 2006,16(3):613−617. doi: 10.1016/S1003-6326(06)60108-8
    [30] Sahar Nekahi, Mohammad Vajdi, Farhad Sadegh Moghanlou, et al. TiB2–SiC-based ceramics as alternative efficient micro heat exchangers[J]. Ceramics International, 2019,45(15):19060−19067. doi: 10.1016/j.ceramint.2019.06.150
    [31] Zhao Guolong, Huang Chuanzhen, He Ning, et al. Microstructural development and mechanical properties of reactive hot pressed nickel-aided TiB2-SiC ceramics[J]. International Journal of Refractory Metals and Hard Materials, 2016,61:13−21. doi: 10.1016/j.ijrmhm.2016.08.001
    [32] Barin I, Platzki G. Thermochemical data of pure substances[M]. 3rd ed. VCH, Weinheim, 1995.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  7
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回