留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯/TiO2复合材料的制备及其对甲基蓝的降解

高微 王俊 李玉峰 唐伟伟 张喆

高微, 王俊, 李玉峰, 唐伟伟, 张喆. 石墨烯/TiO2复合材料的制备及其对甲基蓝的降解[J]. 钢铁钒钛, 2022, 43(2): 56-61. doi: 10.7513/j.issn.1004-7638.2022.02.009
引用本文: 高微, 王俊, 李玉峰, 唐伟伟, 张喆. 石墨烯/TiO2复合材料的制备及其对甲基蓝的降解[J]. 钢铁钒钛, 2022, 43(2): 56-61. doi: 10.7513/j.issn.1004-7638.2022.02.009
Gao Wei, Wang Jun, Li Yufeng, Tang Weiwei, Zhang Zhe. Preparation of graphene/TiO2 composites and study on degradation of methyl blue[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 56-61. doi: 10.7513/j.issn.1004-7638.2022.02.009
Citation: Gao Wei, Wang Jun, Li Yufeng, Tang Weiwei, Zhang Zhe. Preparation of graphene/TiO2 composites and study on degradation of methyl blue[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 56-61. doi: 10.7513/j.issn.1004-7638.2022.02.009

石墨烯/TiO2复合材料的制备及其对甲基蓝的降解

doi: 10.7513/j.issn.1004-7638.2022.02.009
基金项目: 攀枝花市指导性科技计划项目(2021ZD-G-10);黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2018092)。
详细信息
    作者简介:

    高微(1985—),女,吉林长春人,博士生,主要从事复合材料的研究与应用,E-mail: ttgg2011@126.com

  • 中图分类号: TF823,TQ426

Preparation of graphene/TiO2 composites and study on degradation of methyl blue

  • 摘要: 光催化降解已成为污水处理领域发展最快的方法。为改善TiO2的光催化性能,采用溶胶-凝胶法制备石墨烯(GN)/TiO2复合材料,利用XRD、SEM对样品的微观结构进行表征,研究制备过程中煅烧温度、煅烧时间以及石墨烯含量对GN/TiO2复合材料光催化性能的影响。结果表明:所制备TiO2为球状形貌,粒径为70~200 nm,分布在石墨烯的片层和边缘。当煅烧温度为500 ℃,煅烧时间为20 min,石墨烯含量为5%时对甲基蓝(MB)的光催化降解率最高,为87.21%。此外,研究了GN/TiO2复合材料对甲基蓝光催化降解的重复利用率,并探讨了光催化机理,结果表明重复使用5次后,对甲基蓝的降解率降低了17.64个百分点。
  • 图  1  GN/TiO2复合材料的制备流程

    Figure  1.  Schematic for the synthesis process of GN/TiO2 composite

    图  2  甲基蓝光催化示意

    1-紫外灯;2-进气管;3-GN/TiO2复合材料;4-甲基蓝溶液

    Figure  2.  Schematic for the light catalytic experiment of methyl blue

    图  3  样品的XRD谱

    (a)TiO2(400 ℃煅烧20 min);(b)石墨烯;(c)GN/TiO2复合材料(400 ℃煅烧20 min)

    Figure  3.  XRD patterns of samples

    图  4  GN/TiO2在不同煅烧温度下的XRD谱

    Figure  4.  XRD patterns of GN/TiO2 at different calcination temperature

    图  5  样品的SEM形貌

    (a)石墨烯;(b)TiO2(400 ℃煅烧20 min);(c)GN/TiO2复合材料(400 ℃煅烧20 min)

    Figure  5.  SEM images of samples

    图  6  煅烧温度对甲基蓝降解率的影响

    Figure  6.  Effect of calcination temperature on degradation rate of methyl blue

    图  7  煅烧时间对甲基蓝降解率的影响

    Figure  7.  Effect of calcination time on degradation rate of methyl blue

    图  8  石墨烯含量对甲基蓝降解率的影响

    Figure  8.  Effect of graphene content on degradation rate of methyl blue

    图  9  GN/TiO2复合材料重复使用次数与甲基蓝降解率的关系曲线

    Figure  9.  The relationship between the number of reutilization of GN/TiO2 composite and methyl blue degradation rate

    图  10  GN/TiO2光催化降解甲基蓝机理示意

    Figure  10.  Mechanism of GN/TiO2 photocatalytic degradation of methyl blue

    表  1  GN/TiO2复合材料的制备参数

    Table  1.   Process parameters of GN/TiO2 composite

    序号煅烧温度/℃煅烧时间/min石墨烯含量/%
    1#400203
    2#500203
    3#600203
    4#700203
    5#500103
    6#500203
    7#500303
    8#500403
    9#500200
    10#500201
    11#500203
    12#500205
    13#500207
    14#500209
    下载: 导出CSV
  • [1] Wang Min, Xia Lixin, Lin Qingxian. Hollow 3 D rGO/P-HC/TiO2 for photocatalytic degradation of ammonia nitrogen[J]. Iron Steel Vanadium Titanium, 2020,41(6):45−51. (王敏, 夏立新, 林清娴. 中空三维rGO/P-HC/TiO2复合材料光催化降解氨氮[J]. 钢铁钒钛, 2020,41(6):45−51. doi: 10.7513/j.issn.1004-7638.2020.06.010
    [2] You Jia, Jiang Huan, Han Yanlin, et al. Study on preparation of CdS/TiO2 composite by microemulsion and its photocatalytic properties[J]. Iron Steel Vanadium Titanium, 2020,41(1):24−31. (尤佳, 江环, 韩炎霖, 等. 微乳液法制备CdS/TiO2复合材料及光催化性能研究[J]. 钢铁钒钛, 2020,41(1):24−31. doi: 10.7513/j.issn.1004-7638.2020.01.005
    [3] Assadi A A, Loganathan S, Tri P N, et al. Pilot scale degradation of mono and multi volatile organic compounds by surface discharge plasma/TiO2 reactor: investigation of competition and synergism[J]. J Hazard Mater, 2018,357:305−313. doi: 10.1016/j.jhazmat.2018.06.007
    [4] Xu H, Han F, Xia C, et al. Correction to: wafer-scale fabrication of sub-10 nm TiO2-Ga2O3 n-p Hetero junctions with efficient photocatalytic activity by atomic layer deposition[J]. Nanoscale Res Lett, 2019,14:173. doi: 10.1186/s11671-019-3028-5
    [5] Andronic L, Enesca A, Cazan C, et al. TiO2-active carbon composites for wastewater photocatalysis[J]. J Sol-Gel Sci Techn, 2014,71(3):396−405. doi: 10.1007/s10971-014-3393-6
    [6] El-Sayed B A, Mohamed W A, Galal H R, et al. Photocatalytic study of some synthesized MWCNTs/TiO2 nanocomposites used in the treatment of industrial hazard materials[J]. Egypt J Pet, 2019,28(2):247−252. doi: 10.1016/j.ejpe.2019.05.002
    [7] Qi K, Selvaraj R, Fahdi T A, et al. Enhanced photocatalytic activity of anatase-TiO2 nanoparticles by fullerene modification: A theoretical and experimental study[J]. Appl Surf Sci, 2016,387:750−758. doi: 10.1016/j.apsusc.2016.06.134
    [8] Khalaghi M, Atapour M, Momeni M M, et al. Photocatalytic activity and photo-electrochemical performance of trimetallic (Cu-Ni-Zn)/TiO2 coating on AISI 316 L stainless steel for water treatment[J]. Applied Physics A, 2020,126:352. doi: 10.1007/s00339-020-03550-1
    [9] Sheshmani S, Nayebi M. Modification of TiO2 with graphene oxide and reduced graphene oxide; enhancing photocatalytic activity of TiO2 for removal of remazol Black B[J]. Polym Compos, 2019,40(1):210−216. doi: 10.1002/pc.24630
    [10] Yu Lan, Wang Juanjuan, Wang Zhangzhi, et al. Preparation of TiO2 microspheres/zeolite and its degradation on ofloxacin[J]. Industrial Water Treatment, 2021,41(1):88−92. (俞岚, 王娟娟, 王长智, 等. 微球TiO2/沸石催化剂的制备及其对氟氧沙星的降解[J]. 工业水处理, 2021,41(1):88−92.
    [11] Miranda S M, Romanos G E, Likodimos V, et al. Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT composites[J]. Appl Catal B, 2014,147:65−81. doi: 10.1016/j.apcatb.2013.08.013
    [12] Katsumata K I, Matsushita N, Okada K. Preparation of TiO2-fullerene composites and their photocatalytic activity under visible light[J]. Int J Photoenergy, 2011,2012:1302−1312.
    [13] Ibrahim Q, Akbarzadeh R. A photocatalytic TiO2/graphene bilayer membrane design for water desalination: a molecular dynamic simulation[J]. J Mol Model, 2020,26:165. doi: 10.1007/s00894-020-04422-4
    [14] Liu Y, Zhang D. Effects of structural differences of graphene and the preparation strategies on the photocatalytic activity of graphene–TiO2 composite film[J]. J Mater Sci Mater Electron, 2017,28:4965−4973. doi: 10.1007/s10854-016-6150-5
    [15] Thaweechai T, Siriaksoontorn W, Poo-arporn Y, et al. Transparent graphene quantum dot/amorphous TiO2 nanocomposite sol as homogeneous-like photocatalyst[J]. J Nanopart Res, 2021,23:225. doi: 10.1007/s11051-021-05338-7
    [16] Gao Wei, Zhao Zhifeng, Zhou Changhai. Preparation and electrochemical properties of polypyrrole/graphene composites[J]. Journal of Heilongjiang University of Science and Technology, 2018,28(2):204−208. (高微, 赵志凤, 周长海. 聚吡咯/石墨烯复合材料的制备及电化学性能[J]. 黑龙江科技大学学报, 2018,28(2):204−208. doi: 10.3969/j.issn.2095-7262.2018.02.016
    [17] Sun Aihua, Guo Pengju, Li Yong, et al. Preparation of titania nano-particles by self-born seed-hydrolysis of TiCl4[J]. China Powder Science and Technology, 2008,14(6):44−48. (孙爱华, 郭鹏举, 李勇, 等. TiCl4自生晶种水解法制备纳米二氧化钛[J]. 中国粉体技术, 2008,14(6):44−48. doi: 10.3969/j.issn.1008-5548.2008.06.012
    [18] Huang Mianfeng, Zheng Zhixiang, Xu Guanqing, et al. Preparation, characterization and photocatalytic activity of exfoliated graphite supported titanium dioxide photocatalyst[J]. Journal of the Chinese Ceramic Society, 2008,38(3):325−329. (黄绵峰, 郑治祥, 徐光青, 等. 膨胀石墨负载纳米二氧化钛光催化剂的制备、表征与其光催化性能[J]. 硅酸盐学报, 2008,38(3):325−329. doi: 10.3321/j.issn:0454-5648.2008.03.012
    [19] Zuo R, Du G, Zhang W, et al. Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite[J]. Adv Mater Sci Eng, 2014,2014:1−7.
    [20] Balarak D, Mengelizadeh N, Rajiv P, et al. Photocatalytic degradation of amoxicillin from aqueous solutions by titanium dioxide nanoparticles loaded on graphene oxide[J]. Environ Sci Pollut Res, 2021,28:49743−49754. doi: 10.1007/s11356-021-13525-1
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  12
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-06
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回