[1] |
Chen Kunfeng, Yang Yangyang, Chen Xu, et al. Study of transition metal-based material for electrochemical energy storage[J]. Journal of Henan University (Natural Science), 2014,44(4):398−415. (陈昆峰, 杨阳阳, 陈旭, 等. 过渡金属材料的电化学储能性能研究[J]. 河南大学学报(自然科学版), 2014,44(4):398−415.
|
[2] |
Wang Feng, Fang Yi, Huang Gang, et al. Research progress in transition metal oxide anode materials[J]. Battery Bimonthly, 2017,47(5):312−314. (王丰, 方宜, 黄刚, 等. 过渡金属氧化物负极材料的研究进展[J]. 电池, 2017,47(5):312−314.
|
[3] |
Zhang Zhian, Yang Bangchao, Deng Meigen, et al. Progress of research on electrode materials for metal-oxide ultracapacitors[J]. Material Review, 2004,18(7):30−33. (张治安, 杨邦朝, 邓梅根, 等. 金属氧化物超大容量电容器电极材料的研究进展[J]. 材料导报, 2004,18(7):30−33. doi: 10.3321/j.issn:1005-023X.2004.07.009
|
[4] |
Li Dequan, Lu Qingjie, Zhang Jin, et al. Research progress of metal oxide electrode materials in supercapacitors[J]. Journal of Functional Materials and Devices, 2021,27(1):16−25. (李德全, 卢清杰, 张瑾, 等. 超级电容器中金属氧化物电极材料的研究进展[J]. 功能材料与器件学报, 2021,27(1):16−25.
|
[5] |
Qian Tao, Xu Na, Zhou Jinqiu, et al. Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2015,3(2):488−493. doi: 10.1039/C4TA05769D
|
[6] |
Zhu Haopeng, Wang Hongwei, Zhao Li. Preparation of manganese dioxide/biocarbon electrode materials and its capacitive performance[J]. Journal of Jilin Jianzhu University, 2021,38(1):44−48. (朱浩鹏, 王宏伟, 赵丽. 二氧化锰/生物碳电极材料的制备及电容性能研究[J]. 吉林建筑大学学报, 2021,38(1):44−48. doi: 10.3969/j.issn.1009-0185.2021.01.008
|
[7] |
Xu Zhou, Hou Cheng, Wang Shiqin, et al. Quasi-solid-state asymmetric supercapacitor constructed with NiO/CNT composites and its electrochemical performance[J]. Chemical Industry and Engineering Progress, 2020,39(10):4088−4091. (徐舟, 侯程, 王诗琴, 等. 氧化镍/碳纳米管构筑准固态不对称超级电容器及电化学性能[J]. 化工进展, 2020,39(10):4088−4091.
|
[8] |
Wang Changcheng, Hu Hongli, Li Long, et al. Research progress of transition metal oxide in super capacitor[J]. Power Capacitor & Reactive Compensation, 2020,41(5):81−87. (王长城, 胡红利, 李龙, 等. 过渡金属氧化物在超级电容器中的研究进展[J]. 电力电容器与无功补偿, 2020,41(5):81−87.
|
[9] |
Wang Zhonghang, Zheng Shili, Du Hao, et al. Latest development of new vanadium materials[J]. Iron Steel Vanadium Titanium, 2012,33(3):98−106. (王中行, 郑诗礼, 杜浩, 等. 新型钒材料研究进展[J]. 钢铁钒钛, 2012,33(3):98−106. doi: 10.7513/j.issn.1004-7638.2012.03.019
|
[10] |
Wei Qiulong, Jiang Zhouyang, Tan Shuangshuang, et al. Vanadium oxide nanomaterials for sodium-ion battery[J]. Journal of the Chinese Ceramic Society, 2016,44(5):694−706. (魏湫龙, 蒋周阳, 谭双双, 等. 钒氧化物纳米材料在钠离子电池中的应用[J]. 硅酸盐学报, 2016,44(5):694−706.
|
[11] |
Sun Wei, Gao Guohua, Zhang Kun, et al. Self-assembled 3D N-CNFs/V2O5 aerogels with core/shell nanostructures through vacancies control and seeds growth as an outstanding supercapacitor electrode material[J]. Carbon, 2018,132:667−677. doi: 10.1016/j.carbon.2018.03.004
|
[12] |
Qian Aniu, Pang Yiwei, Wang Guangyu, et al. Pseudocapacitive charge storage in MXene-V2O5 for asymmetric flexible energy storage devices[J]. ACS Applied Materials & Interfaces, 2012,12(49):54791−54797.
|
[13] |
Zheng Yanzhen, Ding Haiyang, Evan Uchake, et al. Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium storage properties[J]. Journal of Materials Chemistry A, 2015,3(5):1979−1985. doi: 10.1039/C4TA05500D
|
[14] |
Ma Yining, Huang Aibin, Zhou Huaijuan, et al. Template-free formation of various V2O5 hierarchical structures as cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017,5(14):6522−6531. doi: 10.1039/C6TA11194G
|
[15] |
Li Guizhu, Qiu Yongcai, Yuan Hou, et al. Synthesis of V2O5 hierarchical structures for long cycle-life lithium-ion storage[J]. Journal of Materials Chemistry A, 2015,3(3):1103−1109. doi: 10.1039/C4TA04864D
|
[16] |
Kim Kyungho, Lee Manjong. Template-assisted solvothermal assembly of size-controlled hierarchical V2O5 hollow microspheres with tunable nanoscale building blocks and their enhanced lithium storage properties[J]. Electrochimica Acta, 2017,258:942−950. doi: 10.1016/j.electacta.2017.11.145
|
[17] |
Xing Lidong, Yu Qiyao, Bao Yanping, et al. Strong (001)facet-induced growth of multi-hierarchical tremella-like Sn-doped V2O5 for high-performance potassium-ion batterie[J]. Journal of Materials Chemistry A, 2017,7(45):25993−26001.
|
[18] |
David McNulty, Buckley D Noel, Colm O’Dwyer. V2O3 polycrystalline nanorod cathode materials for Li-ion batteries with long cycle life and high capacity retention[J]. Chem. Electro. Chem., 2017,4(8):2037−2044.
|
[19] |
Luo Hao, Wang Bo, Wang Fei, et al. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage[J]. ACS Nano, 2020,14(6):7328−7337. doi: 10.1021/acsnano.0c02658
|
[20] |
Deng Lie, Chen Hongzhe, Wu Jian, et al. V2O3 as cathode of zinc ion battery with high stability and long cycling life[J]. Ionics, 2021,27:3393−3402. doi: 10.1007/s11581-021-04121-x
|
[21] |
Pei Cunyuan, Xiong Fangyu, Sheng Jinzhi, et al. VO2 Nanoflakes as the cathode material of hybrid magnesium -lithium-ion batteries with high energy density[J]. ACS Applied Materials & Interfaces, 2017,9(20):17060−17066.
|
[22] |
Hu Kang, Jin Danqing, Zhang Yao, et al. Metallic vanadium trioxide intercalated with phase transformation for advanced aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2021,61:594−601. doi: 10.1016/j.jechem.2021.02.014
|
[23] |
Cao Ziyi, Chu Hang, Zhang Hong, et al. An in situ electrochemical oxidation strategy for formation of nanogrid-shaped V3O7·H2O with enhanced zinc storage properties[J]. Journal of Materials Chemistry A, 2019,7(44):25262−25267.
|
[24] |
Xu Jun, Yu Bansui, Zhao Han, et al. Oxygen-doped VS4 microspheres with abundant sulfur vacancies as a superior electrocatalyst for the hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2020,8(39):15055−15064.
|
[25] |
Gregory Lui, Jiang Gaopeng, Duan Aoshu, et al. Synthesis and characterization of template-free VS4 nanostructured materials with potential application in photocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2015,54(10):2682−2689.
|
[26] |
Zhou Yanli, Liu Pengfei, Jiang Fuyi, et al. Vanadium sulfide sub-microspheres: a new near-infrared-driven photocatalyst[J]. Journal of Colloid and Interface Science, 2017,498:442−448. doi: 10.1016/j.jcis.2017.03.081
|
[27] |
Li Wenbin, Huang Jianfeng, Cao Liyun, et al. Controlled construction of 3D self-assembled VS4 nanoarchitectures as high-performance anodes for sodium-ion batteries[J]. Electrochimica Acta, 2018,274:334−342. doi: 10.1016/j.electacta.2018.04.106
|
[28] |
Qin Haigang, Yang Zhanhong, Chen Linlin, et al. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite[J]. Journal of Materials Chemistry A, 2018,6(46):23757−23765. doi: 10.1039/C8TA08133F
|
[29] |
Bidhan Pandit, Lakshmana Kumar Bommineedi, Babasaheb R Sankapal. Electrochemical engineering approach of high performance solid-state flexible supercapacitor device based on chemically synthesized VS2 nanoregime structure[J]. Journal of Energy Chemistry, 2019,31:79−88. doi: 10.1016/j.jechem.2018.05.011
|
[30] |
Li Zhenjiang, Ding Shiqi, Yin Jifang, et al. Morphology-dependent electrochemical performance of VS4 for rechargeable magnesium battery and its magnesiation/demagnesiation mechanism[J]. Journal of Power Sources, 2020,451:227815. doi: 10.1016/j.jpowsour.2020.227815
|
[31] |
Cai Liangting, Zhang Qiang, Jean Pierre Mwizerwa, et al. High crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances[J]. ACS Applied Materials & Interfaces, 2018,10(12):10053−10063.
|
[32] |
Yang Guang, Zhang Bowei, Feng Jianyong, et al. High-crystallinity urchin-like VS4 anode for high-performance lithium-ion storage[J]. ACS Applied Materials & Interfaces, 2018,10(17):14727−14734.
|
[33] |
Wang Yanrong, Liu Ziteng, Wang Caixing, et al. Highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries[J]. Advanced Materials, 2018,30(12):1802563.
|
[34] |
Yang Fei, Zhong Wen, Wang He, et al. Three-dimensional VS4 consisting of uniform nanosheets as excellent anode material for sodium ion batteries[J]. Journal of Alloys and Compounds, 2020,834:155204. doi: 10.1016/j.jallcom.2020.155204
|
[35] |
Muhammad Rashad, Zhang Hongzhang, Muhammad Asif, et al. Low cost room temperature synthesis of NaV3O8. 1.69 H2O nanobelts for Mg batteries[J]. ACS Applied Materials & Interfaces, 2018,10(5):4757−4766.
|
[36] |
Hu Ping, Zhu Ting, Wang Xuanpeng, et al. Highly durable Na2V6O16·1.63 H2O nanowire cathode for aqueous zinc-ion battery[J]. Nano Letters, 2018,18(3):1758−1763. doi: 10.1021/acs.nanolett.7b04889
|
[37] |
Liu Xiaojing, Hu Xinyue, Hou Shuang, et al. Anion deficiency motivated Na2V6O16 nanobelts for superior sustainable zinc ion storage[J]. Journal of Materials Chemistry A, 2021,9(21):21209−21218.
|
[38] |
Sun Dan, Jin Guanhua, Wang Haiyan, et al. Aqueous rechargeable lithium batteries using NaV6O15 nanoflakes as high performance anodes[J]. Journal of Materials Chemistry A, 2014,2(32):12999−13005. doi: 10.1039/C4TA01675K
|
[39] |
Yang Gang, Wang Guan, Hou Wenhua. Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries[J]. The Journal of Physical Chemistry B, 2005,109(22):11186−11196. doi: 10.1021/jp050448s
|
[40] |
Partheeban Thamodaran, Thangaian Kesavan, Murugan Vivekanantha, et al. Operando structural and electrochemical investigation of Li1.5V3O8 nanorods in Li-ion batteries[J]. ACS Applied Energy Materials, 2019,2(1):852−859. doi: 10.1021/acsaem.8b01915
|
[41] |
Mohamad Izha Ishak, Mohd Sobri Idris, Rozana A, et al. Facile synthesis of layered LiV3O8 nanosheets and their electrochemical performance as cathode materials for Li-ion batteries[J]. Journal of Materials Engineering and Performance, 2020,29:2542−2550. doi: 10.1007/s11665-020-04727-8
|
[42] |
Sun Dan, Jin Guanhua, Wang Haiyan, et al. LixV2O5/LiV3O8 nanoflakes with significantly improved electrochemical performance for Li-ion batteries[J]. Journal of Materials Chemistry A, 2014,2(32):8009−8016.
|
[43] |
Balaji Sambandam, Vaiyapuri Soundharrajan, Sungjin Kim, et al. K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries[J]. Journal of Materials Chemistry A, 2018,6(32):15530−15539. doi: 10.1039/C8TA02018C
|
[44] |
Dong Liwei, Xu Rengen, Wang Panpan, et al. Layered potassium vanadate K2V6O16 nanowires: a stable and high capacity cathode material for calcium-ion batteries[J]. Journal of Power Sources, 2020,479:228793. doi: 10.1016/j.jpowsour.2020.228793
|
[45] |
Lai Jianwei, Tang Hui, Zhu Xiuping, et al. A hydrated NH4V3O8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries[J]. Journal of Materials Chemistry A, 2019,7(40):23140−23148. doi: 10.1039/C9TA07822C
|
[46] |
Wang Haiyan, Huang Kelong, Liu Suqin, et al. Electrochemical property of NH4V3O8·0.2H2O flakes prepared by surfactant assisted hydrothermal method[J]. Journal of Power Source, 2011,196:788−792. doi: 10.1016/j.jpowsour.2010.07.022
|
[47] |
Wang Haiyan, Ren Yu, Wang Wenjie, et al. NH4V3O8 nanorod as a high performance cathode material for rechargeable Li-ion batteries[J]. Journal of Power Source, 2012,199:315−321. doi: 10.1016/j.jpowsour.2011.10.069
|
[48] |
Zhao Jingxin, Liu Bao, Xu Shan, et al. Fabrication and electrochemical prop-erties of porous VN hollow nanofibers[J]. Journal of Alloys and Compounds, 2015,651:785−792. doi: 10.1016/j.jallcom.2015.06.111
|
[49] |
Alexey M Glushenkov, Denisa Hulicakova-Jurcakova, David Llewellyn, et al. Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5[J]. Chemistry of Materials, 2010,22(3):914−921. doi: 10.1021/cm901729x
|
[50] |
Xiao Xu, Peng Xiang, Jin Huanyu, et al. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors[J]. Advanced Materials, 2013,25(36):5091−5097. doi: 10.1002/adma.201301465
|
[51] |
By Daiwon Choi, George E Blomgren, Prashant N Kumta. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors[J]. Advanced Materials, 2006,18(9):1178−1182. doi: 10.1002/adma.200502471
|
[52] |
Gao Zhaohui, Zhang Hao, Cao Gaoping, et al. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor[J]. Electrochim Acta, 2013,87:375−380. doi: 10.1016/j.electacta.2012.09.075
|
[53] |
Zhao Jingxin, Liu Bao, Xu Shan, et al. Fabrication and electrochemical properties of porous VN hollow nanofibers[J]. Journal of Alloys and Compounds, 2015:785−792.
|
[54] |
Ma Lianbo, Yuan Hao, Zhang Wenjun, et al. Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium-sulfur batteries[J]. Nano Letters, 2017,17(12):7839−7846. doi: 10.1021/acs.nanolett.7b04084
|
[55] |
Portoa R Lucio, Bouhtiyy S, Pierson J F, et al. VN thin films as electrode materials for electrochemical capacitors[J]. Electrochimica Acta, 2014,141:203−211. doi: 10.1016/j.electacta.2014.07.056
|
[56] |
Zhang Qichong, Wang Xiaona, Pan Zhenghui, et al. Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density[J]. Nano Letters, 2017,17(4):2719−2726. doi: 10.1021/acs.nanolett.7b00854
|
[57] |
Xu Yunling, Wang Jie, Shen Laifa, et al. One-dimensional vanadium nitride nanofibers fabricated by electrospinning for supercapacitors[J]. Electrochimica Acta, 2015,173:680−686. doi: 10.1016/j.electacta.2015.05.088
|
[58] |
Yuan Jun, Hu Xiang, Li Junwei, et al. V2O3 nanoparticles confined in high-conductivity and high throughput carbon nanofiber nanohybrids for advanced sodium ion capacitors[J]. ACS Applied Materials & Interfaces, 2021,13(8):10001−10012.
|
[59] |
Bao Jian, Zhang Xiaodong, Bai Liangfei, et al. All-solid-state flexible thin-film supercapacitors with high electrochemical performance based on a two-dimensional V2O5·H2O/graphene composite[J]. Journal of Materials Chemistry A, 2014,2(28):10876−10881. doi: 10.1039/c3ta15293f
|
[60] |
Sun Wei, Gao Guohua, Du Yuchuan, et al. A facile strategy for fabricating hierarchical nanocomposites of V2O5 nanowire arrays on a three-dimensional N-doped graphene aerogel with a synergistic effect for supercapacitors[J]. Journal of Materials Chemistry A, 2018,6(21):9938−9947. doi: 10.1039/C8TA01448E
|
[61] |
Zeng Jing, Huang Jingdong, Liu Jun, et al. Self-assembly of single layer V2O5 nanoribbon/graphene heterostructures as ultrahigh-performance cathode materials for lithium-ion batteries[J]. Carbom, 2019,154:24−32.
|
[62] |
Waqas Ali Haider, Muhammad Tahir, He Liang, et al. Integration of VS2 nanosheets into carbon for high energy density micro-supercapacitor[J]. Journal of Alloys and Compounds, 2020,823:151769. doi: 10.1016/j.jallcom.2019.151769
|
[63] |
Zhu Liya, Yang Chengsheng, Chen Yanan, et al. Lithium storage performance and mechanism of VS4/rGO as an electrode material associated with lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2019,785:855−861. doi: 10.1016/j.jallcom.2019.01.253
|