留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒基电极材料在储能领域的研究进展

周华 宋永昌 刘进 郝延蔚 孙瑞敏 周永恒 张艳树

周华, 宋永昌, 刘进, 郝延蔚, 孙瑞敏, 周永恒, 张艳树. 钒基电极材料在储能领域的研究进展[J]. 钢铁钒钛, 2022, 43(2): 73-80. doi: 10.7513/j.issn.1004-7638.2022.02.012
引用本文: 周华, 宋永昌, 刘进, 郝延蔚, 孙瑞敏, 周永恒, 张艳树. 钒基电极材料在储能领域的研究进展[J]. 钢铁钒钛, 2022, 43(2): 73-80. doi: 10.7513/j.issn.1004-7638.2022.02.012
Zhou Hua, Song Yongchang, Liu Jin, Hao Yanwei, Sun Ruimin, Zhou Yongheng, Zhang Yanshu. Progress of vanadium-based electrode materials in energy storage[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 73-80. doi: 10.7513/j.issn.1004-7638.2022.02.012
Citation: Zhou Hua, Song Yongchang, Liu Jin, Hao Yanwei, Sun Ruimin, Zhou Yongheng, Zhang Yanshu. Progress of vanadium-based electrode materials in energy storage[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 73-80. doi: 10.7513/j.issn.1004-7638.2022.02.012

钒基电极材料在储能领域的研究进展

doi: 10.7513/j.issn.1004-7638.2022.02.012
基金项目: 开封市科技攻关项目(2101003,2101002,2101012);河南省科技攻关项目(212102210243,212102310507)。
详细信息
    作者简介:

    周华(1986—),女,河南中牟人,理学博士,讲师,通讯作者,主要研究方向:储能材料的设计与开发,E-mail:zhouhuayatou@163.com

  • 中图分类号: TF841.3,TM911

Progress of vanadium-based electrode materials in energy storage

  • 摘要: 由于具有多变的价态、开放的结构和较高的理论容量,钒基化合物被认为是一种低成本和高性能的储能材料,在钠离子电池、锂离子电池和超级电容器等领域显示出巨大的应用潜力。对钒氧化合物、硫化钒和钒酸盐等钒基电极材料进行了归纳总结,在合理设计电极材料的基础上通过改性或复合的方法进一步提升其能量密度、功率密度和循环寿命,从理论和实际应用上大大推动了钒基材料在储能领域的研究发展。
  • [1] Chen Kunfeng, Yang Yangyang, Chen Xu, et al. Study of transition metal-based material for electrochemical energy storage[J]. Journal of Henan University (Natural Science), 2014,44(4):398−415. (陈昆峰, 杨阳阳, 陈旭, 等. 过渡金属材料的电化学储能性能研究[J]. 河南大学学报(自然科学版), 2014,44(4):398−415.
    [2] Wang Feng, Fang Yi, Huang Gang, et al. Research progress in transition metal oxide anode materials[J]. Battery Bimonthly, 2017,47(5):312−314. (王丰, 方宜, 黄刚, 等. 过渡金属氧化物负极材料的研究进展[J]. 电池, 2017,47(5):312−314.
    [3] Zhang Zhian, Yang Bangchao, Deng Meigen, et al. Progress of research on electrode materials for metal-oxide ultracapacitors[J]. Material Review, 2004,18(7):30−33. (张治安, 杨邦朝, 邓梅根, 等. 金属氧化物超大容量电容器电极材料的研究进展[J]. 材料导报, 2004,18(7):30−33. doi: 10.3321/j.issn:1005-023X.2004.07.009
    [4] Li Dequan, Lu Qingjie, Zhang Jin, et al. Research progress of metal oxide electrode materials in supercapacitors[J]. Journal of Functional Materials and Devices, 2021,27(1):16−25. (李德全, 卢清杰, 张瑾, 等. 超级电容器中金属氧化物电极材料的研究进展[J]. 功能材料与器件学报, 2021,27(1):16−25.
    [5] Qian Tao, Xu Na, Zhou Jinqiu, et al. Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors[J]. Journal of Materials Chemistry A, 2015,3(2):488−493. doi: 10.1039/C4TA05769D
    [6] Zhu Haopeng, Wang Hongwei, Zhao Li. Preparation of manganese dioxide/biocarbon electrode materials and its capacitive performance[J]. Journal of Jilin Jianzhu University, 2021,38(1):44−48. (朱浩鹏, 王宏伟, 赵丽. 二氧化锰/生物碳电极材料的制备及电容性能研究[J]. 吉林建筑大学学报, 2021,38(1):44−48. doi: 10.3969/j.issn.1009-0185.2021.01.008
    [7] Xu Zhou, Hou Cheng, Wang Shiqin, et al. Quasi-solid-state asymmetric supercapacitor constructed with NiO/CNT composites and its electrochemical performance[J]. Chemical Industry and Engineering Progress, 2020,39(10):4088−4091. (徐舟, 侯程, 王诗琴, 等. 氧化镍/碳纳米管构筑准固态不对称超级电容器及电化学性能[J]. 化工进展, 2020,39(10):4088−4091.
    [8] Wang Changcheng, Hu Hongli, Li Long, et al. Research progress of transition metal oxide in super capacitor[J]. Power Capacitor & Reactive Compensation, 2020,41(5):81−87. (王长城, 胡红利, 李龙, 等. 过渡金属氧化物在超级电容器中的研究进展[J]. 电力电容器与无功补偿, 2020,41(5):81−87.
    [9] Wang Zhonghang, Zheng Shili, Du Hao, et al. Latest development of new vanadium materials[J]. Iron Steel Vanadium Titanium, 2012,33(3):98−106. (王中行, 郑诗礼, 杜浩, 等. 新型钒材料研究进展[J]. 钢铁钒钛, 2012,33(3):98−106. doi: 10.7513/j.issn.1004-7638.2012.03.019
    [10] Wei Qiulong, Jiang Zhouyang, Tan Shuangshuang, et al. Vanadium oxide nanomaterials for sodium-ion battery[J]. Journal of the Chinese Ceramic Society, 2016,44(5):694−706. (魏湫龙, 蒋周阳, 谭双双, 等. 钒氧化物纳米材料在钠离子电池中的应用[J]. 硅酸盐学报, 2016,44(5):694−706.
    [11] Sun Wei, Gao Guohua, Zhang Kun, et al. Self-assembled 3D N-CNFs/V2O5 aerogels with core/shell nanostructures through vacancies control and seeds growth as an outstanding supercapacitor electrode material[J]. Carbon, 2018,132:667−677. doi: 10.1016/j.carbon.2018.03.004
    [12] Qian Aniu, Pang Yiwei, Wang Guangyu, et al. Pseudocapacitive charge storage in MXene-V2O5 for asymmetric flexible energy storage devices[J]. ACS Applied Materials & Interfaces, 2012,12(49):54791−54797.
    [13] Zheng Yanzhen, Ding Haiyang, Evan Uchake, et al. Nickel-mediated polyol synthesis of hierarchical V2O5 hollow microspheres with enhanced lithium storage properties[J]. Journal of Materials Chemistry A, 2015,3(5):1979−1985. doi: 10.1039/C4TA05500D
    [14] Ma Yining, Huang Aibin, Zhou Huaijuan, et al. Template-free formation of various V2O5 hierarchical structures as cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017,5(14):6522−6531. doi: 10.1039/C6TA11194G
    [15] Li Guizhu, Qiu Yongcai, Yuan Hou, et al. Synthesis of V2O5 hierarchical structures for long cycle-life lithium-ion storage[J]. Journal of Materials Chemistry A, 2015,3(3):1103−1109. doi: 10.1039/C4TA04864D
    [16] Kim Kyungho, Lee Manjong. Template-assisted solvothermal assembly of size-controlled hierarchical V2O5 hollow microspheres with tunable nanoscale building blocks and their enhanced lithium storage properties[J]. Electrochimica Acta, 2017,258:942−950. doi: 10.1016/j.electacta.2017.11.145
    [17] Xing Lidong, Yu Qiyao, Bao Yanping, et al. Strong (001)facet-induced growth of multi-hierarchical tremella-like Sn-doped V2O5 for high-performance potassium-ion batterie[J]. Journal of Materials Chemistry A, 2017,7(45):25993−26001.
    [18] David McNulty, Buckley D Noel, Colm O’Dwyer. V2O3 polycrystalline nanorod cathode materials for Li-ion batteries with long cycle life and high capacity retention[J]. Chem. Electro. Chem., 2017,4(8):2037−2044.
    [19] Luo Hao, Wang Bo, Wang Fei, et al. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage[J]. ACS Nano, 2020,14(6):7328−7337. doi: 10.1021/acsnano.0c02658
    [20] Deng Lie, Chen Hongzhe, Wu Jian, et al. V2O3 as cathode of zinc ion battery with high stability and long cycling life[J]. Ionics, 2021,27:3393−3402. doi: 10.1007/s11581-021-04121-x
    [21] Pei Cunyuan, Xiong Fangyu, Sheng Jinzhi, et al. VO2 Nanoflakes as the cathode material of hybrid magnesium -lithium-ion batteries with high energy density[J]. ACS Applied Materials & Interfaces, 2017,9(20):17060−17066.
    [22] Hu Kang, Jin Danqing, Zhang Yao, et al. Metallic vanadium trioxide intercalated with phase transformation for advanced aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2021,61:594−601. doi: 10.1016/j.jechem.2021.02.014
    [23] Cao Ziyi, Chu Hang, Zhang Hong, et al. An in situ electrochemical oxidation strategy for formation of nanogrid-shaped V3O7·H2O with enhanced zinc storage properties[J]. Journal of Materials Chemistry A, 2019,7(44):25262−25267.
    [24] Xu Jun, Yu Bansui, Zhao Han, et al. Oxygen-doped VS4 microspheres with abundant sulfur vacancies as a superior electrocatalyst for the hydrogen evolution reaction[J]. ACS Sustainable Chemistry & Engineering, 2020,8(39):15055−15064.
    [25] Gregory Lui, Jiang Gaopeng, Duan Aoshu, et al. Synthesis and characterization of template-free VS4 nanostructured materials with potential application in photocatalysis[J]. ACS Sustainable Chemistry & Engineering, 2015,54(10):2682−2689.
    [26] Zhou Yanli, Liu Pengfei, Jiang Fuyi, et al. Vanadium sulfide sub-microspheres: a new near-infrared-driven photocatalyst[J]. Journal of Colloid and Interface Science, 2017,498:442−448. doi: 10.1016/j.jcis.2017.03.081
    [27] Li Wenbin, Huang Jianfeng, Cao Liyun, et al. Controlled construction of 3D self-assembled VS4 nanoarchitectures as high-performance anodes for sodium-ion batteries[J]. Electrochimica Acta, 2018,274:334−342. doi: 10.1016/j.electacta.2018.04.106
    [28] Qin Haigang, Yang Zhanhong, Chen Linlin, et al. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite[J]. Journal of Materials Chemistry A, 2018,6(46):23757−23765. doi: 10.1039/C8TA08133F
    [29] Bidhan Pandit, Lakshmana Kumar Bommineedi, Babasaheb R Sankapal. Electrochemical engineering approach of high performance solid-state flexible supercapacitor device based on chemically synthesized VS2 nanoregime structure[J]. Journal of Energy Chemistry, 2019,31:79−88. doi: 10.1016/j.jechem.2018.05.011
    [30] Li Zhenjiang, Ding Shiqi, Yin Jifang, et al. Morphology-dependent electrochemical performance of VS4 for rechargeable magnesium battery and its magnesiation/demagnesiation mechanism[J]. Journal of Power Sources, 2020,451:227815. doi: 10.1016/j.jpowsour.2020.227815
    [31] Cai Liangting, Zhang Qiang, Jean Pierre Mwizerwa, et al. High crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances[J]. ACS Applied Materials & Interfaces, 2018,10(12):10053−10063.
    [32] Yang Guang, Zhang Bowei, Feng Jianyong, et al. High-crystallinity urchin-like VS4 anode for high-performance lithium-ion storage[J]. ACS Applied Materials & Interfaces, 2018,10(17):14727−14734.
    [33] Wang Yanrong, Liu Ziteng, Wang Caixing, et al. Highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries[J]. Advanced Materials, 2018,30(12):1802563.
    [34] Yang Fei, Zhong Wen, Wang He, et al. Three-dimensional VS4 consisting of uniform nanosheets as excellent anode material for sodium ion batteries[J]. Journal of Alloys and Compounds, 2020,834:155204. doi: 10.1016/j.jallcom.2020.155204
    [35] Muhammad Rashad, Zhang Hongzhang, Muhammad Asif, et al. Low cost room temperature synthesis of NaV3O8. 1.69 H2O nanobelts for Mg batteries[J]. ACS Applied Materials & Interfaces, 2018,10(5):4757−4766.
    [36] Hu Ping, Zhu Ting, Wang Xuanpeng, et al. Highly durable Na2V6O16·1.63 H2O nanowire cathode for aqueous zinc-ion battery[J]. Nano Letters, 2018,18(3):1758−1763. doi: 10.1021/acs.nanolett.7b04889
    [37] Liu Xiaojing, Hu Xinyue, Hou Shuang, et al. Anion deficiency motivated Na2V6O16 nanobelts for superior sustainable zinc ion storage[J]. Journal of Materials Chemistry A, 2021,9(21):21209−21218.
    [38] Sun Dan, Jin Guanhua, Wang Haiyan, et al. Aqueous rechargeable lithium batteries using NaV6O15 nanoflakes as high performance anodes[J]. Journal of Materials Chemistry A, 2014,2(32):12999−13005. doi: 10.1039/C4TA01675K
    [39] Yang Gang, Wang Guan, Hou Wenhua. Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries[J]. The Journal of Physical Chemistry B, 2005,109(22):11186−11196. doi: 10.1021/jp050448s
    [40] Partheeban Thamodaran, Thangaian Kesavan, Murugan Vivekanantha, et al. Operando structural and electrochemical investigation of Li1.5V3O8 nanorods in Li-ion batteries[J]. ACS Applied Energy Materials, 2019,2(1):852−859. doi: 10.1021/acsaem.8b01915
    [41] Mohamad Izha Ishak, Mohd Sobri Idris, Rozana A, et al. Facile synthesis of layered LiV3O8 nanosheets and their electrochemical performance as cathode materials for Li-ion batteries[J]. Journal of Materials Engineering and Performance, 2020,29:2542−2550. doi: 10.1007/s11665-020-04727-8
    [42] Sun Dan, Jin Guanhua, Wang Haiyan, et al. LixV2O5/LiV3O8 nanoflakes with significantly improved electrochemical performance for Li-ion batteries[J]. Journal of Materials Chemistry A, 2014,2(32):8009−8016.
    [43] Balaji Sambandam, Vaiyapuri Soundharrajan, Sungjin Kim, et al. K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries[J]. Journal of Materials Chemistry A, 2018,6(32):15530−15539. doi: 10.1039/C8TA02018C
    [44] Dong Liwei, Xu Rengen, Wang Panpan, et al. Layered potassium vanadate K2V6O16 nanowires: a stable and high capacity cathode material for calcium-ion batteries[J]. Journal of Power Sources, 2020,479:228793. doi: 10.1016/j.jpowsour.2020.228793
    [45] Lai Jianwei, Tang Hui, Zhu Xiuping, et al. A hydrated NH4V3O8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries[J]. Journal of Materials Chemistry A, 2019,7(40):23140−23148. doi: 10.1039/C9TA07822C
    [46] Wang Haiyan, Huang Kelong, Liu Suqin, et al. Electrochemical property of NH4V3O8·0.2H2O flakes prepared by surfactant assisted hydrothermal method[J]. Journal of Power Source, 2011,196:788−792. doi: 10.1016/j.jpowsour.2010.07.022
    [47] Wang Haiyan, Ren Yu, Wang Wenjie, et al. NH4V3O8 nanorod as a high performance cathode material for rechargeable Li-ion batteries[J]. Journal of Power Source, 2012,199:315−321. doi: 10.1016/j.jpowsour.2011.10.069
    [48] Zhao Jingxin, Liu Bao, Xu Shan, et al. Fabrication and electrochemical prop-erties of porous VN hollow nanofibers[J]. Journal of Alloys and Compounds, 2015,651:785−792. doi: 10.1016/j.jallcom.2015.06.111
    [49] Alexey M Glushenkov, Denisa Hulicakova-Jurcakova, David Llewellyn, et al. Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5[J]. Chemistry of Materials, 2010,22(3):914−921. doi: 10.1021/cm901729x
    [50] Xiao Xu, Peng Xiang, Jin Huanyu, et al. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors[J]. Advanced Materials, 2013,25(36):5091−5097. doi: 10.1002/adma.201301465
    [51] By Daiwon Choi, George E Blomgren, Prashant N Kumta. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors[J]. Advanced Materials, 2006,18(9):1178−1182. doi: 10.1002/adma.200502471
    [52] Gao Zhaohui, Zhang Hao, Cao Gaoping, et al. Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor[J]. Electrochim Acta, 2013,87:375−380. doi: 10.1016/j.electacta.2012.09.075
    [53] Zhao Jingxin, Liu Bao, Xu Shan, et al. Fabrication and electrochemical properties of porous VN hollow nanofibers[J]. Journal of Alloys and Compounds, 2015:785−792.
    [54] Ma Lianbo, Yuan Hao, Zhang Wenjun, et al. Porous-shell vanadium nitride nanobubbles with ultrahigh areal sulfur loading for high-capacity and long-life lithium-sulfur batteries[J]. Nano Letters, 2017,17(12):7839−7846. doi: 10.1021/acs.nanolett.7b04084
    [55] Portoa R Lucio, Bouhtiyy S, Pierson J F, et al. VN thin films as electrode materials for electrochemical capacitors[J]. Electrochimica Acta, 2014,141:203−211. doi: 10.1016/j.electacta.2014.07.056
    [56] Zhang Qichong, Wang Xiaona, Pan Zhenghui, et al. Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density[J]. Nano Letters, 2017,17(4):2719−2726. doi: 10.1021/acs.nanolett.7b00854
    [57] Xu Yunling, Wang Jie, Shen Laifa, et al. One-dimensional vanadium nitride nanofibers fabricated by electrospinning for supercapacitors[J]. Electrochimica Acta, 2015,173:680−686. doi: 10.1016/j.electacta.2015.05.088
    [58] Yuan Jun, Hu Xiang, Li Junwei, et al. V2O3 nanoparticles confined in high-conductivity and high throughput carbon nanofiber nanohybrids for advanced sodium ion capacitors[J]. ACS Applied Materials & Interfaces, 2021,13(8):10001−10012.
    [59] Bao Jian, Zhang Xiaodong, Bai Liangfei, et al. All-solid-state flexible thin-film supercapacitors with high electrochemical performance based on a two-dimensional V2O5·H2O/graphene composite[J]. Journal of Materials Chemistry A, 2014,2(28):10876−10881. doi: 10.1039/c3ta15293f
    [60] Sun Wei, Gao Guohua, Du Yuchuan, et al. A facile strategy for fabricating hierarchical nanocomposites of V2O5 nanowire arrays on a three-dimensional N-doped graphene aerogel with a synergistic effect for supercapacitors[J]. Journal of Materials Chemistry A, 2018,6(21):9938−9947. doi: 10.1039/C8TA01448E
    [61] Zeng Jing, Huang Jingdong, Liu Jun, et al. Self-assembly of single layer V2O5 nanoribbon/graphene heterostructures as ultrahigh-performance cathode materials for lithium-ion batteries[J]. Carbom, 2019,154:24−32.
    [62] Waqas Ali Haider, Muhammad Tahir, He Liang, et al. Integration of VS2 nanosheets into carbon for high energy density micro-supercapacitor[J]. Journal of Alloys and Compounds, 2020,823:151769. doi: 10.1016/j.jallcom.2019.151769
    [63] Zhu Liya, Yang Chengsheng, Chen Yanan, et al. Lithium storage performance and mechanism of VS4/rGO as an electrode material associated with lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2019,785:855−861. doi: 10.1016/j.jallcom.2019.01.253
  • 加载中
计量
  • 文章访问数:  239
  • HTML全文浏览量:  18
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回