留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

某钒钛磁铁矿尾矿制备加气混凝土砌块的研究

丁春江 张凯峰

丁春江, 张凯峰. 某钒钛磁铁矿尾矿制备加气混凝土砌块的研究[J]. 钢铁钒钛, 2022, 43(2): 94-100. doi: 10.7513/j.issn.1004-7638.2022.02.015
引用本文: 丁春江, 张凯峰. 某钒钛磁铁矿尾矿制备加气混凝土砌块的研究[J]. 钢铁钒钛, 2022, 43(2): 94-100. doi: 10.7513/j.issn.1004-7638.2022.02.015
Ding Chunjiang, Zhang Kaifeng. Study on preparation of aerated concrete block from vanadium-titanium magnetite tailing[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 94-100. doi: 10.7513/j.issn.1004-7638.2022.02.015
Citation: Ding Chunjiang, Zhang Kaifeng. Study on preparation of aerated concrete block from vanadium-titanium magnetite tailing[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 94-100. doi: 10.7513/j.issn.1004-7638.2022.02.015

某钒钛磁铁矿尾矿制备加气混凝土砌块的研究

doi: 10.7513/j.issn.1004-7638.2022.02.015
详细信息
    作者简介:

    丁春江(1989-),男,博士研究生,研究方向:能源材料,E-mail:wustzhxy@163.com

  • 中图分类号: X757

Study on preparation of aerated concrete block from vanadium-titanium magnetite tailing

  • 摘要: 以承德某钒钛磁铁矿尾矿为主要原料,采用免蒸压的方法,制备了一种性能优良的加气混凝土砌块,研究了配方组成对样品干密度与抗压强度的影响。结果表明:添加水泥与石灰使样品的抗压强度先增大后减小,干密度先减小后增大,添加矿渣可提高样品的抗压强度与干密度,添加Al粉造成样品的抗压强度与干密度下降。采用最佳配方(钒钛磁铁矿尾矿∶矿渣∶生石灰∶水泥∶石膏=6∶ 6∶4∶3∶1,铝粉添加量为0.05%)可制备出抗压强度为4.41 MPa,干密度为695 kg/m3的加气混凝土砌块。样品经28 d养护后,生成了托勃莫来石与水化硅酸钙等水化产物。样品孔隙结构发达,大量结晶良好的叶片状及纤维状的托勃莫来石与CSH相互交织,形成典型的“桥连”结构,从而赋予样品较低的导热系数、优良的耐热性及环境安全性。为高效利用承德地区的钒钛磁铁矿尾矿提供了依据。
  • 图  1  钒钛磁铁矿尾矿物相组成

    Figure  1.  Phase composition of the vanadium-titanium magnetite tailings

    图  2  钒钛磁铁矿尾矿-矿渣添加量对加气混凝土的影响

    Figure  2.  Influence of vanadium-titanium magnetite tailings-slag addition on the non-autoclaved aerated concrete

    图  3  钒钛磁铁矿尾矿-水泥添加量对加气混凝土的影响

    Figure  3.  Influence of vanadium-titanium magnetite tailings-cement addition on the aerated concrete

    图  4  钒钛磁铁矿尾矿-生石灰添加量对加气混凝土的影响

    Figure  4.  Influence of vanadium-titanium magnetite tailings-calcined lime addition on the aerated concrete

    图  5  钒钛磁铁矿尾矿-铝粉添加量对加气混凝土的影响

    Figure  5.  Influence of vanadium-titanium magnetite tailings-aluminite powder addition on the non-autoclaved aerated concrete

    图  6  样品的XRD谱图及断面的SEM形貌

    Figure  6.  XRD spectra and fracture surface SEM image of sample

    表  1  钒钛磁铁矿尾矿的化学成分

    Table  1.   Chemical compositions of the vanadium-titanium magnetite tailings %

    SiO2Al2O3CaOMgOFe2O3FeONa2OV2O5TiO2SO3烧损
    72.0511.033.211.262.772.500.490.202.300.493.70
    下载: 导出CSV

    表  2  钒钛磁铁矿尾矿粒度分析

    Table  2.   Particle size analysis of the vanadium-titanium magnetite tailings

    粒度范围/mm含量/%
    −0.25~+0.183.10
    −0.18~+0.125.30
    −0.12~+0.1065.30
    −0.106~+0.0746.20
    −0.07480.10
    下载: 导出CSV

    表  3  矿渣化学成分

    Table  3.   Chemical composition of the slag powder %

    SiO2Al2O3CaOMgOFeONa2O
    32.2324.4132.959.680.690.04
    下载: 导出CSV

    表  4  相关试验仪器

    Table  4.   Related experimental instruments

    仪器名称型号生产厂家
    瓷衬球磨机XMCQ武汉探矿机械厂
    增力电动搅拌器JJ-1金坛市易晟仪器制造有限公司
    水泥胶砂搅拌机JJ-5无锡市建工仪器有限公司
    快速沸煮箱ZSA-5A北京三思行测控技术有限公司
    恒温干燥箱101-4上海新正机械仪器制造有限公司
    智能测力仪RFP-03济南天辰试验机制造有限公司
    下载: 导出CSV

    表  5  砌块相关性能

    Table  5.   Related performance of block

    性能干密度/(kg·m−3)抗压强度/MPa干缩值/
    %
    导热性能/(W·m−1·K−1抗冻性
    质量损失/%冻后强度/MPa
    砌块6954.410.690.112.94.09
    标准值≤725≥4.0≤0.80≤0.18≤5.0≥4.0
    下载: 导出CSV

    表  6  样品耐热性测试结果

    Table  6.   Heat resistance test results of samples

    温度/℃冷却强度/MPa外观
    2004.55正常
    3004.38正常
    4004.40灰黑色
    5002.63灰白色
    6001.44有裂纹
    7001.21有裂纹
    下载: 导出CSV

    表  7  样品重金属浸出浓度与相关标准要求

    Table  7.   Leaching concentration of heavy metals from sample and the corresponding standard requirements mg/L

    CuPbCdCrZn
    含量0.0130.0010.0010.0400.100
    标准限值<3.00<5.00<1.00<15.00<100.00
    下载: 导出CSV
  • [1] Zhang Jun. New light wall materials can be produced by low-temperature autoclaving process from low-lean vanadium ilmenite resources[J]. Building Materials Development Orientation, 2013,(5):107−108. (张均. 低贫钒钛铁矿资源可以采用低温蒸压工艺生产的新型轻质墙体材料[J]. 建材发展导向, 2013,(5):107−108.
    [2] 于明珠. 承德市尾矿库安全监管问题与对策研究[D]. 保定: 河北大学, 2014.

    Yu Minzhu. Study on safety supervision and management of tailings pond in Chengde [D]. Baoding: Hebei University, 2014.
    [3] Zhang Shaomin. Recovery of iron and titanium from a vanadium-titanium magnetite concentrate tailings in Chengde area[J]. Modern Mining, 2013,29(10):108−109. (张韶敏. 承德地区某钒钛磁铁矿选铁尾矿回收铁、钛试验[J]. 现代矿业, 2013,29(10):108−109.
    [4] Song Xiaomin, Wang Yonggang. Comprehensive recovery of titanium and iron from a tailings in Twin Towers mountain in Chengde[J]. Modern Mining, 2015,(1):86−87. (宋晓敏, 王永刚. 承德双塔山某尾矿综合回收钛、铁试验[J]. 现代矿业, 2015,(1):86−87.
    [5] Liu Changmiao, Wu Dongyin, Lv Zhihu, et al. Study on beneficiation of ilmenite in tailings of a vanadium titanium magnetite ore[J]. China Mining, 2015,(5):115−117. (刘长淼, 吴东印, 吕子虎, 等. 某钒钛磁铁矿尾矿中钛铁矿的选矿研究[J]. 中国矿业, 2015,(5):115−117.
    [6] Zou Xiaotong, Wu Qisheng, Guang Jianmiao, et al. Effect of calcium-silicon ratio on properties of hydrothermal nickel slag aerated concrete[J]. Materials Report, 2016,30(10):126−129. (邹小童, 吴其胜, 光鉴淼, 等. 钙硅比对水热合成镍矿渣加气混凝土性能的影响[J]. 材料导报, 2016,30(10):126−129.
    [7] Wang Changlong, Ni Wen, Li Dezhong. Experimental study on preparation of aerated concrete from low silicon iron tailings in Lingqiu, Shanxi[J]. Journal of Coal Mine, 2012,37(7):1129−1133. (王长龙, 倪文, 李德忠, 等. 山西灵丘低硅铁尾矿制备加气混凝土的试验研究[J]. 煤炭学报, 2012,37(7):1129−1133.
    [8] Yang Liyuan, Wan Huiwen, Li Jie. Exploration and study on technological parameters of preparation of aerated concrete from phosphorus tailings[J]. Journal of Wuhan University of Technology, 2011,(9):20−22. (杨力远, 万惠文, 李杰. 利用磷尾矿制备加气混凝土工艺参数的探索研究[J]. 武汉理工大学学报, 2011,(9):20−22.
    [9] Du Hui, Liu Xingwei, Li Qiuyi, et al. Effect of ultrafine mineral powder on the strength of high performance concrete[J]. Journal of Qingdao Technological University, 2009,30(4):162−165. (杜辉, 刘星伟, 李秋义, 等. 超细矿粉对高性能混凝土强度的影响[J]. 青岛理工大学学报, 2009,30(4):162−165.
    [10] Guang Jianmiao, Wu Qisheng, Liu Xiaoyan, et al. Hydrothermal synthesis of nickel slag aerated concrete and its hydration products[J]. Journal of Materials Science and Engineering, 2016,34(3):421−426. (光鉴淼, 吴其胜, 刘小艳, 等. 水热合成镍矿渣加气混凝土及其水化产物[J]. 材料科学与工程学报, 2016,34(3):421−426.
    [11] 王斌. 铁尾矿加气混凝土的制备及其性能研究[D]. 沈阳: 沈阳建筑大学, 2015.

    Wang Bin. Study on preparation and performance of iron tailings aerated concrete [D]. Shenyang: Shenyang Construction University, 2015.
    [12] Wang Changlong, Ni Wen, Qiao Chunyu, et al. Preparation and properties of iron tailings aerated concrete[J]. Journal of Materials Research, 2013,(2):157−162. (王长龙, 倪文, 乔春雨, 等. 铁尾矿加气混凝土的制备和性能[J]. 材料研究学报, 2013,(2):157−162.
    [13] Wu Xiaomei, Fan Yueming. Types and microstructure of hydration products of aerated concrete from fly ash[J]. Journal of South China University of Science and Technology (Natural Science Edition), 2003,31(8):57−61. (吴笑梅, 樊粤明. 粉煤灰加气混凝土水化产物的种类和微观结构[J]. 华南理工大学学报(自然科学版), 2003,31(8):57−61.
    [14] Sun Guokuang, Tang Di, Zhao Yuping. Study on carbonization of aerated concrete and its hydration products[J]. Journal of the Chinese Ceramic Society, 1985,(4):24−33. (孙国匡, 唐弟, 赵宇平. 加气混凝土及其水化产物碳化的研究[J]. 硅酸盐学报, 1985,(4):24−33.
    [15] Mu Shanbin, Sun Zhenya. Study on hydration products and structure of aerated concrete with fly ash[J]. Comprehensive Utilization of Fly Ash, 2002,(1):16−18. (牟善彬, 孙振亚. 粉煤灰加气砼的水化产物及其结构的研究[J]. 粉煤灰综合利用, 2002,(1):16−18. doi: 10.3969/j.issn.1005-8249.2002.01.008
    [16] Sun Baozhen, Su Erda. Crystallinity and carbonization rate of hydrated calcium silicate[J]. Journal of the Chinese Ceramic Society, 1984,(3):25−30,132. (孙抱真, 苏而达. 水化硅酸钙的结晶度与碳化速度[J]. 硅酸盐学报, 1984,(3):25−30,132.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  11
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-10
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回