留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钛烧结矿软熔滴落过程中的物相组成及化学成分变化规律研究

谢洪恩 胡鹏 郑魁 朱凤湘

谢洪恩, 胡鹏, 郑魁, 朱凤湘. 钒钛烧结矿软熔滴落过程中的物相组成及化学成分变化规律研究[J]. 钢铁钒钛, 2022, 43(2): 107-117. doi: 10.7513/j.issn.1004-7638.2022.02.017
引用本文: 谢洪恩, 胡鹏, 郑魁, 朱凤湘. 钒钛烧结矿软熔滴落过程中的物相组成及化学成分变化规律研究[J]. 钢铁钒钛, 2022, 43(2): 107-117. doi: 10.7513/j.issn.1004-7638.2022.02.017
Xie Hong’en, Hu Peng, Zheng Kui, Zhu Fengxiang. Study on phase and chemical composition of V-Ti sinter during softening, melting and dripping process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 107-117. doi: 10.7513/j.issn.1004-7638.2022.02.017
Citation: Xie Hong’en, Hu Peng, Zheng Kui, Zhu Fengxiang. Study on phase and chemical composition of V-Ti sinter during softening, melting and dripping process[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 107-117. doi: 10.7513/j.issn.1004-7638.2022.02.017

钒钛烧结矿软熔滴落过程中的物相组成及化学成分变化规律研究

doi: 10.7513/j.issn.1004-7638.2022.02.017
详细信息
    作者简介:

    谢洪恩(1977—),男,四川内江人,研究生,研究方向:钒钛矿高炉冶炼,E-mail: pzhxiehongen@163.com

  • 中图分类号: TF53,TF823

Study on phase and chemical composition of V-Ti sinter during softening, melting and dripping process

  • 摘要: 钒钛磁铁精矿的入炉方式是攀钢优化高炉炉料结构的重要内容,对V和Ti在软熔滴落过程中的迁移以及Ti(C,N)的生成有重要影响。目前钒钛烧结矿是攀钢高炉的主要炉料,约一半的钒钛磁铁精矿通过烧结矿进入高炉。通过对钒钛烧结矿在软熔滴落过程中的物相组成和化学成分的变化规律进行研究发现,在烧结矿的软熔滴落过程中,Ti、V、Si、Mg、Al等元素逐渐从钛赤铁矿、钛磁铁矿、铁酸钙等物相迁移到渣相中,同时炉渣吸收焦炭的硫分和灰分。金属铁中Ti、Si、S和C的质量分数已达到甚至超过正常生产时的水平,V的质量分数虽远低于正常生产时的水平,但在金属铁中的收得率远高于Ti、Si、S。烧结矿炉渣冷却后形成的主要物相是黄长石,其次是钙钛矿和辉石。Ti和V主要赋存于钙钛矿中,其次是黄长石和辉石中。在软熔过程中,生成的碳氮化钛很少;在重熔滴落过程中,渣中碳氮化钛显著增加。
  • 图  1  铁矿石软熔性能试验设备示意

    Figure  1.  Schematic diagram of experimental apparatus for iron ore softening-melting property

    图  2  钒钛烧结矿软熔性能测定后的试样

    Figure  2.  Different samples of vanadium-titanium sinter after softening-melting property testing

    图  3  烧结矿软熔液泛渣的SEM照片

    Figure  3.  SEM photo of flooding slag on graphite pusher during softening

    图  4  烧结矿软熔未滴渣的SEM照片及EDS分析

    Figure  4.  SEM image and EDS analysis of the sinter softening-melting undripped slag

    图  5  烧结矿软熔滴落渣的SEM照片及EDS分析

    Figure  5.  SEM image and EDS analysis of the sinter softening-melting dripped slag

    图  6  烧结矿重熔滴落渣的SEM照片及EDS分析

    Figure  6.  SEM image and EDS analysis of the sinter remelting dripped slag

    图  7  金属铁中V、Ti、Si、S的收得率

    Figure  7.  Yield of V, Ti, Si and S in metallic iron

    表  1  钒钛烧结矿的主要化学成分

    Table  1.   Chemical composition of vanadium-titanium sinter

    化学成分/%RO
    TFeFeOCaOSiO2MgOAl2O3TiO2V2O5S
    50.777.9910.975.582.723.005.590.3880.0251.97
    下载: 导出CSV

    表  2  焦炭的化学成分

    Table  2.   Chemical compositions of coke %

    FcadMtStVdafAd
    K2ONa2OCaOSiO2MgOAl2O3Fe2O3合计
    85.880.230.631.090.080.100.497.240.133.731.0312.80
    下载: 导出CSV

    表  3  烧结矿重熔后的渣铁质量

    Table  3.   Weight of slag and metallic iron after sinter remelting g

    未滴落炉渣未滴落金属铁滴落炉渣滴落金属铁合计
    41.070.013.125.8149.9
    下载: 导出CSV

    表  4  不同炉渣的化学成分

    Table  4.   Chemical compositions of different slags

    样品名称化学成分/%
    TFeFeOCaOSiO2MgOAl2O3TiO2V2O5STiCTiN
    软熔液泛渣6.002.2538.4722.425.1410.1414.640.6950.18<0.1<0.1
    软熔未滴渣4.253.0929.7215.838.568.1415.310.7010.14<0.1<0.1
    软熔滴落渣14.003.9237.3421.237.7410.4116.560.7200.16<0.1<0.1
    重熔未滴渣11.753.4130.5221.237.918.7913.450.2320.531.130.34
    重熔滴落渣19.882.0829.9518.687.778.2512.770.1450.41<0.10.247
    下载: 导出CSV

    表  5  主要造渣组份的相对质量分数

    Table  5.   Relative content of main slagging components in different slags

    样品名称相对质量分数/%R2
    CaOSiO2MgOAl2O3TiO2V2O5S
    软熔液泛渣41.9624.455.6111.0615.970.760.201.72
    软熔未滴渣37.9120.1910.9210.3819.530.890.181.88
    软熔滴落渣39.6622.558.2211.0617.590.760.171.76
    重熔未滴渣36.9225.689.5710.6316.270.280.641.44
    重熔滴落渣38.4123.969.9610.5816.380.190.531.60
    烧结矿渣相38.8019.749.6210.6119.771.370.091.97
    下载: 导出CSV

    表  6  不同金属铁的化学成分

    Table  6.   Chemical compositions of different metallic irons

    样品名称化学成分/%
    CSVTiSi
    软熔未滴铁4.830.0550.1020.1140.135
    软熔滴落铁3.400.0800.0290.2070.193
    重熔未滴铁4.530.1250.0760.2591.100
    重熔滴落铁4.760.0880.0800.0700.431
    生产铁样4.420.0870.333
    下载: 导出CSV

    表  7  烧结矿软熔液泛渣的物相组成和元素分布

    Table  7.   Phase and element distribution of flooding slag on graphite pusher during softening

    矿物名称w/%化学成分/%
    FeOTiVSiCaMgAl
    黄长石 68.54 3.71 74.00 23.39 39.00 90.19 72.93 84.19 88.65
    钙钛矿 21.84 2.21 21.40 73.70 56.03 4.34 23.16 5.86 7.15
    金属铁 4.71 81.52 0.09 0.28 1.55 0.24 0.17 0.59 0.32
    辉石 1.21 0.04 1.33 1.01 0.10 1.30 0.91 3.45 1.72
    透辉石 0.80 0.23 0.91 0.20 0.54 1.12 0.63 2.58 0.38
    铁酸钙 1.15 8.70 0.62 0.94 1.33 0.67 0.59 1.54 0.64
    玻璃质 0.04 0.00 0.05 0.01 0.05 0.07 0.01 0.11 0.06
    其它 1.71 3.61 1.60 0.47 1.42 2.07 1.58 1.69 1.08
    下载: 导出CSV

    表  8  烧结矿软熔未滴落渣的物相组成和元素分布

    Table  8.   Phase and element distribution of residual slag in graphite crucible during softening

    矿物名称w/%化学成分/%
    FeONTiVSiCaMgAl
    黄长石 35.73 0.26 47.26 0 7.40 13.83 69.45 51.82 35.88 56.82
    钙钛矿 22.76 0.49 27.03 0 84.13 58.82 3.91 31.48 3.68 8.61
    金属铁 22.15 93.21 0.50 0 1.10 7.28 1.24 0.82 1.89 1.59
    辉石 7.03 0.07 9.91 0 2.89 4.78 9.66 7.22 16.04 16.93
    透辉石 6.03 0.19 8.36 0 1.45 4.89 12.01 6.46 17.50 2.60
    镁铝尖晶石 1.90 0.05 2.90 0 0.99 4.47 0.55 0.38 6.21 11.28
    MgO 1.26 0.03 1.76 0 0.14 2.68 0.04 0.07 14.57 0
    铁酸钙 2.09 4.67 1.14 0 1.46 2.00 1.41 1.19 1.85 1.28
    玻璃质 0.03 0 0.05 0 0.01 0.03 0.09 0.01 0.05 0.07
    碳氧化钛 0.01 0 0.01 0 0.03 0.02 0 0 0 0
    碳氮化钛 0 0 0 100.00 0.05 0.01 0 0 0 0
    其它 1.00 1.03 1.09 0 0.37 1.20 1.64 0.55 2.33 0.82
    *注:碳氮化钛为0.005225%,碳氮化钛物相0.006066%。
    下载: 导出CSV

    表  9  烧结矿软熔滴落渣的物相组成和元素分布

    Table  9.   Phase and element distribution of dripping slag during softening

    矿物名称w/%化学成分/%
    FeONTiVSiCaMgAl
    黄长石 57.84 8.98 59.91 0 41.28 62.71 71.22 63.54 53.06 61.51
    钙钛矿 16.33 2.12 15.87 0 45.05 32.97 3.45 18.32 3.22 5.47
    金属铁 3.50 79.48 0.04 0 0.10 0.34 0.11 0.08 0.18 0.15
    辉石 20.94 0.01 23.04 0 12.93 2.88 23.96 17.24 41.61 31.88
    透辉石 0.28 0.06 0.35 0 0.08 0.16 0.40 0.24 0.57 0.21
    镁铝尖晶石 0.01 0 0.01 0 0 0.01 0 0 0.02 0.04
    铁酸钙 0.57 5.37 0.32 0 0.39 0.56 0.36 0.32 0.55 0.35
    碳氮化钛 0.454* 0 0 100.00 0 0 0 0 0 0
    其它 0.54 3.98 0.46 0 0.17 0.38 0.51 0.27 0.79 0.41
    *注:碳氮化钛为0.000454%。
    下载: 导出CSV

    表  10  烧结矿重熔未滴落渣的物相组成和元素分布

    Table  10.   Phase and element distribution of residual slag in graphite crucible during remelting

    矿物w/%化学成分/%
    FeONTiVSiCaMgAl
    黄长石53.161.7859.290.0017.9929.3072.5464.6850.7969.71
    钙钛矿16.920.5717.380.0065.5947.471.9119.992.545.18
    金属铁9.6190.430.310.001.023.580.830.631.391.16
    辉石5.320.246.150.005.372.505.733.8711.279.26
    透辉石8.870.4410.510.002.066.9612.938.3123.372.96
    钙铁辉石2.485.662.240.000.842.802.911.723.202.57
    镁铝尖晶石1.610.142.050.001.513.620.200.205.317.64
    碳氮化钛0.310.010.01100.002.430.430.050.050.060.00
    碳氧化钛0.390.000.340.001.971.340.210.190.340.27
    其它1.320.741.720.001.222.012.690.361.741.25
    下载: 导出CSV

    表  11  不同炉渣主要物相组成对比

    Table  11.   Main phase composition of different slags %

    样品名称黄长石钙钛矿辉石其它
    软熔液泛渣71.9322.922.113.04
    软熔未滴落渣45.9029.2416.788.08
    软熔滴落渣59.9316.9221.991.16
    重熔未滴落渣58.8218.7218.444.02
    下载: 导出CSV

    表  12  生产高炉渣的化学成分

    Table  12.   Chemical composition of blast furnace slag during production %

    CaOSiO2MgOAl2O3TiO2V2O5SR2
    27.0324.728.1113.0921.850.240.501.09
    下载: 导出CSV
  • [1] 攀枝花钒钛磁铁矿选矿烧结高炉冶炼试验资料汇编[R]. 北京. 1978: 167−498.

    Data compilation of beneficiation, sintering and blast furnace smelting test of Panzhihua vanadium-bearing titanomagnetite[R]. Beijing. 1978:167−498.
    [2] Xu Caidong, Lin Rong. Important physicochemical problems in high temperature reduction of Panzhihua vanadium-bearing titanomagnetite[J]. Iron Steel Vanadium Titanium, 1980,2(2):1−10. (徐采栋, 林蓉. 攀枝花钒铁磁铁矿高温还原中的重要物理化学问题[J]. 钢铁钒钛, 1980,2(2):1−10. doi: 10.7513/j.issn.1004-7638.1987.04.001
    [3] Bai Chenguang, Pei Henian, Zhao Shijin, et al. An investigation of the relationship between the particle size of titanium carbonitride and the viscosity of blast furnace slag bearing high titania[J]. Iron Steel Vanadium Titanium, 1995,16(3):6−9. (白晨光, 裴鹤年, 赵诗金, 等. 碳氮化钛粒度与熔渣粘度关系的研究[J]. 钢铁钒钛, 1995,16(3):6−9. doi: 10.7513/j.issn.1004-7638.1995.03.002
    [4] Xie Dongsheng, Mao Yuwen, Guo Zhaoxin, et al. Viscosity of TiO2-containing blast furnace slags under neutral condition[J]. Iron and Steel, 1986,21(1):7−11. (谢冬生, 毛裕文, 郭昭信, 等. 中性条件下高炉钛渣粘度的研究[J]. 钢铁, 1986,21(1):7−11.
    [5] Liao J L, Li J, Wang X D, et al. Influence of TiO2 and basicity on viscosity of Ti bearing slag[J]. Ironmaking and Steelmaking, 2012,39(2):133−139. doi: 10.1179/1743281211Y.0000000064
    [6] Xie Hong’en, Qin Xingguo, Zheng Kui, et al. Analysis of effect factors of smelting temperature of high-titanium-type blast furnace slag[J]. China Metallurgy, 2017,27(9):13−19. (谢洪恩, 秦兴国, 郑魁, 等. 高钛型高炉渣熔化性温度影响因素分析[J]. 中国冶金, 2017,27(9):13−19.
    [7] Lin Y H, Zhang L Q, Huang X L. Influence of CaF2 on the apparent viscosity of CaO-SiO2-MgO-Al2O3-TiO2 slags[J]. Metallurgical Research and Technology, 2017,114(6):606−610. doi: 10.1051/metal/2017067
    [8] Qu Yanping, Du Hegui. Determination of surface viscosity and bulk viscosity of blast furnace type titanium slag containing MnO[J]. Metallurgy of Sichuan, 1997,19(1):22−24, 32. (曲彦平, 杜鹤桂. 含MnO高炉型钛渣表面粘度和体相粘度的测定[J]. 四川冶金, 1997,19(1):22−24, 32.
    [9] Qi C L, Zhang J L, Shao J G, et al. Study of boronizing mechanism of high-alumina Slag[J]. Steel Research International, 2011,82(11):1319−1324. doi: 10.1002/srin.201100118
    [10] Song Guocai, Yuan Tianyu, Chen Xiaowu. Study on phase composition of the cohesive dropping zone in BF during smelting V-bearing titaniferrous maganetite sinter[J]. Iron Steel Vanadium Titanium, 1996,17(2):25−27. (宋国才, 苑天宇, 陈小武. 高炉冶炼钒钛烧结矿软熔滴落带物相组成研究[J]. 钢铁钒钛, 1996,17(2):25−27. doi: 10.7513/j.issn.1004-7638.1996.02.005
    [11] Yang Guangqing, Yang Wenkang, Li Xiaosong, et al. Comparative study of microstructure changes in vanadium titanium sinter and ordinary sinter during reduction process[J]. Iron Steel Vanadium Titanium, 2018,39(2):102−109. (杨广庆, 杨文康, 李小松, 等. 钒钛烧结矿与普通烧结矿还原过程中微观结构变化对比研究[J]. 钢铁钒钛, 2018,39(2):102−109. doi: 10.7513/j.issn.1004-7638.2018.02.017
    [12] Gan Qin, He Qun, Wen Yongcai. Study on influence of MgO on mineral composition and metallurgical properties of V-bearing titaniferous magnetite sinter[J]. Iron and Steel, 2008,43(8):7−11. (甘勤, 何群, 文永才. MgO对钒钛烧结矿矿物组成及冶金性能影响的研究[J]. 钢铁, 2008,43(8):7−11. doi: 10.3321/j.issn:0449-749X.2008.08.002
    [13] Bai Dongdong, Han Xiuli, Li Changcun, et al. Influence of mineral structure of vanadium-titanium sinter on its metallurgical properties[J]. Iron Steel Vanadium Titanium, 2018,39(5):111−115. (白冬冬, 韩秀丽, 李昌存, 等. 钒钛烧结矿矿相结构对其冶金性能的影响[J]. 钢铁钒钛, 2018,39(5):111−115.
    [14] Zhang Jianliang, Yang Guangqing, Guo Hongwei, et al. Microstructure change of V-Ti magnetite concentrate pellets during reduction[J]. Journal of University of Science and Technology Beijing, 2013,35(1):42−48. (张建良, 杨广庆, 国宏伟, 等. 含钒钛铁矿球团还原过程中微观结构变化[J]. 北京科技大学学报, 2013,35(1):42−48.
    [15] 程功金. 块状带高铬型钒钛磁铁矿还原动力学及有价组元迁移行为的研究[D]. 沈阳: 东北大学, 2013.

    Cheng Gongjin. Study on kinetics of high chromia vanadium-titanium magnetite reduction and migration behavior of valuable elements in lumpy zone[D]. Shenyang: Northeatern University, 2013
    [16] 刘建兴. 软熔滴落带高铬型钒钛磁铁矿有价组元迁移机理[D]. 沈阳: 东北大学, 2013.

    Liu Jianxing. The migration mechanism of valuable components for high chromia vanadium-titanium magnetite in cohesive zone[D]. Shenyang: Northeatern University, 2013.
    [17] Zhan Xing. Anatomical study on smelting vanadium-bearing titanomagnetite in small blast furnace[J]. Iron Steel Vanadium Titanium, 1984,5(2):3−15. (詹星. 小高炉冶炼钒钛磁铁矿解剖研究[J]. 钢铁钒钛, 1984,5(2):3−15.
    [18] 黄希祜. 钢铁冶金原理[M]. 北京, 冶金工业出版社, 2013.

    Huang Xigu. Principles of iron and steel metallurgy[M]. Beijing: Metallurgical Industry Press, 2013.
    [19] 王筱留. 钢铁冶金学(炼铁部分)[M]. 北京, 冶金工业出版社, 2018.

    Wang Xiaoliu. Iron and steel metallurgy (ironmaking)[M]. Beijing: Metallurgical Industry Press, 2018.
    [20] Du Hegui, Zhang Ziping. The function of V2O5 in Ti-containing slag of blast furnace type to inhibit TiO2 reduction[J]. Iron Steel Vanadium Titanium, 1994,15(4):1−3, 27. (杜鹤桂, 张子平. 高炉型钛渣中V2O5对TiO2还原的抑制[J]. 钢铁钒钛, 1994,15(4):1−3, 27. doi: 10.7513/j.issn.1004-7638.1994.04.001
    [21] 杜鹤桂. 高炉冶炼钒钛磁铁矿原理[M]. 北京: 科学出版社, 1996.

    Du Hegui. Principle of smelting vanadium-bearing titanomagnetite in blast furnace[M]. Beijing: Science Press, 1996.
    [22] 曾广策. 晶体光学及光性矿物学[M]. 武汉: 中国地质大学出版社, 2017.

    Zeng Guangce. Crystal optics and optical mineralogy[M]. Wuhan: China University of Geosciences Press, 2017.
    [23] Fu Weiguo, Diao Risheng, Li Jianming, et al. Characteristics analysis of furnace hearth sediment at No. 1 blast furnace at PZH steel[J]. Iron Steel Vanadium Titanium, 2003,24(3):37−41. (付卫国, 刁日升, 黎建明, 等. 攀钢1号高炉炉底沉积物特点分析[J]. 钢铁钒钛, 2003,24(3):37−41. doi: 10.3969/j.issn.1004-7638.2003.03.008
  • 加载中
图(7) / 表(12)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  35
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回