中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2对高铝高炉渣性能和结构的影响研究

闫华 刘华军 陈布新 扈玫珑

闫华, 刘华军, 陈布新, 扈玫珑. TiO2对高铝高炉渣性能和结构的影响研究[J]. 钢铁钒钛, 2022, 43(2): 118-124. doi: 10.7513/j.issn.1004-7638.2022.02.018
引用本文: 闫华, 刘华军, 陈布新, 扈玫珑. TiO2对高铝高炉渣性能和结构的影响研究[J]. 钢铁钒钛, 2022, 43(2): 118-124. doi: 10.7513/j.issn.1004-7638.2022.02.018
Yan Hua, Liu Huajun, Chen Buxin, Hu Meilong. Effect of TiO2 on physicochemical properties and structure of high-alumina blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 118-124. doi: 10.7513/j.issn.1004-7638.2022.02.018
Citation: Yan Hua, Liu Huajun, Chen Buxin, Hu Meilong. Effect of TiO2 on physicochemical properties and structure of high-alumina blast furnace slag[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 118-124. doi: 10.7513/j.issn.1004-7638.2022.02.018

TiO2对高铝高炉渣性能和结构的影响研究

doi: 10.7513/j.issn.1004-7638.2022.02.018
基金项目: 国家重大专项研发计划项目(2018YFC190050404)。
详细信息
    作者简介:

    闫华(1982—),男,重庆人,高级工程师,主要研究方向为冶金工程及工程设计,E-mail:54927517@qq.com

    通讯作者:

    扈玫珑(1980—),女,甘肃白银人,教授,主要研究方向为冶金工程,E-mail:hml@cqu.edu.cn

  • 中图分类号: TF534.1

Effect of TiO2 on physicochemical properties and structure of high-alumina blast furnace slag

  • 摘要: 随着国内各钢铁企业高炉配加经济性较高的高铝原料的增加,炉渣中Al2O3含量增加,渣铁流动性变差,给高炉冶炼带来一系列问题。以CaO-SiO2-Al2O3-MgO-TiO2五元渣系为研究对象,通过相图理论计算结合试验研究和炉渣结构分析,研究了高铝渣中不同TiO2含量(低钛:5%,中钛:15%,高钛:25%)对高铝高炉渣黏度、熔化性温度的影响,并通过炉渣结构研究解析了影响炉渣物化性能的原因。结果表明:固定碱度R2为1.25,TiO2质量分数增加至25%过程中,炉渣熔化温度先下降后增高,当TiO2质量分数为7%时,炉渣液相析出相由斜长石类的钙铝硅酸盐(Ca2Al2SiO7)转变为高熔点钛酸钙(CaTiO3),其熔点为1975 ℃,炉渣熔化温度增加;TiO2含量由低钛5%增加至高钛25%时,炉渣黏度和熔化性温度均降低。温度越高,炉渣流动性越好,渣中TiO2以[TiO6]8-八面体结构存在,可使渣中复杂硅氧网状结构解体;TiO2含量由5%增加至25%时,炉渣中复杂结构单元Si(Q2 + Q3)的含量降低,简单结构单元Si(Q0 + Q1)的含量升高,Si(Q2 + Q3)/Si (Q0 + Q1)降低,炉渣结构简单化,即炉渣中无论是在低钛、中钛、还是高钛含量,TiO2在炉渣中起炉渣修饰子作用,对降低炉渣黏度、改善炉渣流动性有积极作用,可作为高铝冶炼调控手段之一。
  • 图  1  CaO-SiO2-17 %Al2O3-8 %MgO-TiO2五元渣系液相线

    Figure  1.  Liquidus diagram of five-component CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag system

    图  2  黏度试验装置

    Figure  2.  Viscosity test device

    图  3  CaO-SiO2-17%Al2O3-8 %MgO-TiO2 五元渣系液相投影

    Figure  3.  Liquid phase projection of five-component CaO-SiO2-17 %Al2O3-8%MgO-TiO2 slag system

    图  4  五元渣系熔化温度随TiO2含量变化曲线

    Figure  4.  Temperature change curve of the five-component slag system with TiO2 increasing

    图  5  五元渣系理论黏度计算图随TiO2变化曲线

    Figure  5.  Viscosity change curve of the five-component slag system with TiO2 increasing

    图  6  TiO2含量对CaO-SiO2-17%Al2O3-8%MgO-TiO2渣系黏度的影响

    Figure  6.  Effect of w(TiO2) on viscosity of CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag system

    图  7  w(TiO2)对CaO-SiO2- 17%Al2O3-8%MgO-TiO2渣系熔化性温度的影响

    Figure  7.  Effect of w(TiO2) on melting temperature of CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag system

    图  8  CaO-SiO2-17%Al2O3-8%MgO-TiO2渣系黏温曲线(R2=1.25)

    Figure  8.  Viscosity temperature curve of CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag system (R2 = 1.25)

    图  9  CaO-SiO2-17%Al2O3-8%MgO-TiO2渣系Raman光谱

    Figure  9.  Raman spectra of CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag

    图  10  CaO-SiO2-8%MgO-17%Al2O3-TiO2渣系Raman光谱分峰拟合

    Figure  10.  Raman spectral peak fitting of CaO-SiO2-8%MgO-17%Al2O3-TiO2 slag system

    图  11  CaO-SiO2-17%Al2O3-8%MgO-TiO2渣系炉渣各结构单元与TiO2含量的关系

    Figure  11.  Relationship between structural units of CaO-SiO2-17%Al2O3-8%MgO-TiO2 slag and TiO2 content

    表  1  CaO-SiO2-17 %Al2O3-8 %MgO-TiO2渣系黏度和熔化性温度测试结果

    Table  1.   Viscosity and melting temperature test results of CaO-SiO2-17 %Al2O3-8 %MgO-TiO2 slag system

    编号R2w/%
    CaOSiO2MgOTiO2Al2O3
    11.2538.8931.118517
    21.2536.1128.8981017
    31.2527.7822.2282517
    下载: 导出CSV

    表  2  熔渣结构单元拉曼光谱特征峰

    Table  2.   Raman-active vibrations for various structure units of slag

    结构单元NBO/T[Qn]波数/cm−1
    [SiO4]4− 4(Q0) 850~880
    [Si2O7]6− 3(Q1) 900~920
    [SiO3]2− 2(Q2) 950~980
    [Si2O7]2− 1(Q3) 1050~1100
    下载: 导出CSV
  • [1] Yu Wen, Ding Guoxuan, Fan Xiaopeng, et al. Study on mine geological ecological environment evaluation based on analytic hierarchy process fuzzy comprehensive model[J]. Three Gorges Ecological Environment Monitoring, 2021,6(2):26−35. (郁文, 丁国轩, 樊小鹏, 等. 基于层次分析-模糊综合模型的矿山地质生态环境评价研究[J]. 三峡生态环境监测, 2021,6(2):26−35.
    [2] Sun Changyu, Chen Yachun, Li Jing, et al. The effect of MgO on the desulfurization of high-aluminum blast furnace slag and its kinetic analysis[J]. Journal of Chongqing University, 2016,39(4):82−87. (孙长余, 陈亚春, 李静, 等. MgO对高铝高炉渣脱硫的影响及其动力学分析[J]. 重庆大学学报, 2016,39(4):82−87. doi: 10.11835/j.issn.1000-582X.2016.04.010
    [3] Kim J R, Lee Y S, Dong J M, et al. Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO[J]. ISIJ International, 2004,44(8):1291−1297. doi: 10.2355/isijinternational.44.1291
    [4] Kim G H, Sohn I. Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2[J]. Journal of Non-Crystalline Solids, 2012,358(12-13):1530−1537. doi: 10.1016/j.jnoncrysol.2012.04.009
    [5] Machin J S, Yee T B, Hanna D L. Viscosity studies of system CaO–MgO–Al2O3–SiO2: III, 35, 45, and 50% SiO2[J]. Journal of the American Ceramic Society, 1952,35(12):322−325. doi: 10.1111/j.1151-2916.1952.tb13057.x
    [6] Tang X L, Zhang Z T, Guo M, et al. Viscosities behavior of CaO-SiO2-MgO-Al2O3 slag with low mass ratio of CaO to SiO2 and wide range of Al2O3 content[J]. Journal of Iron & Steel Research International, 2011,(2):1−17.
    [7] Kurunov I F, Loginov V N, Lyapin S S, et al. New technological solutions to protect the lining of blast-furnace hearths[J]. Metallurgist, 2007,51:425−433. doi: 10.1007/s11015-007-0077-2
    [8] Zhao Y. The impact of titanium on Skull formation in the blast furnace hearth[C]//In: AIST. org, editor. AISTech-2013. Pittsburgh, Pa, USA. 2014: 95-103.
    [9] Yuan Xiang, Zhang Jianliang, Mao Rui, et al. Viscosity and melting properties of blast furnace low titanium slag[J]. Journal of Process Engineering, 2014,14(4):664−670. (袁骧, 张建良, 毛瑞, 等. 高炉低钛渣粘度和熔化性能[J]. 过程工程学报, 2014,14(4):664−670.
    [10] Shi Lili, Li Rong, Long Ping, et al. Effect of Al2O3 and TiO2 content on viscous flow characteristics and mineral composition of titanium bearing blast furnace slag[J]. Shanxi Metallurgy, 2017,40(5):1−3. (施丽丽, 李容, 隆平, 等. Al2O3和TiO2含量对含钛高炉渣黏流特性及矿物组成的影响[J]. 山西冶金, 2017,40(5):1−3.
    [11] Yan Z, Pang Z, Lv X W, et al. Effect of TiO2 on the viscous behavior of high alumina blast furnace slag[C]//9th International Symposium on High-Temperature Metallurgical Processing. 2018: 725-733.
    [12] Wang Z, Shu Q F, Chou K. Viscosity of fluoride-free mold fluxes containing B2O3 and TiO2[J]. Steel Research International, 2013,84(8):766−776. doi: 10.1002/srin.201200256
    [13] Park H, Park J Y, Kim J H, et al. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags[J]. Steel Research International, 2012,83(2):150−156. doi: 10.1002/srin.201100249
    [14] Xu Renze, Zhang Jianliang, Zhang Heshun, et al. Effect of TiO2 on properties of Jingtang blast furnace slag and thermodynamic analysis[J]. Iron and steel, 2017,52(9):104−109. (许仁泽, 张建良, 张贺顺, 等. TiO2对京唐高炉渣性能的影响及热力学分析[J]. 钢铁, 2017,52(9):104−109.
    [15] Nakamoto M, Tsugawa Y, Kiyose A, et al. Effect of TiO2 on the viscosity of molten slag in SiO2-CaO-MgO system[J]. Journal of High Temperature Society, 2007,32(1):74−77.
    [16] Chang Z Y, Jiao K X, Zhang J L, et al. Effect of TiO2 and MnO on viscosity of blast furnace slag and thermodynamic analysis[J]. ISIJ International, 2018,58(12):2173−2179. doi: 10.2355/isijinternational.ISIJINT-2018-379
    [17] Zhang S, Zhang X, Peng H, et al. Structure analysis of CaO-SiO2-Al2O3-TiO2 slag by molecular dynamics simulation and FT-IR spectroscopy[J]. Transactions of the Iron & Steel Institute of Japan, 2014,54(4):734−742.
    [18] Shi Chengbin, Zheng Dingli, Shin Seungho, et al. Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels[J]. International Journal of Minerals Metallurgy and Materials, 2017,24(1):18−24. doi: 10.1007/s12613-017-1374-9
    [19] Liang Xiaoping, Lu Dongxu, Wang Yu, et al. Computational simulation on the coordination structure of CaO-B2O3-SiO2-TiO2 mold fluxes system[J]. Journal of Chongqing University, 2015,38(5):135−141. (梁小平, 陆东旭, 王雨, 等. CaO-B2O3-SiO2-TiO2系保护渣配位结构的计算模拟[J]. 重庆大学学报, 2015,38(5):135−141. doi: 10.11835/j.issn.1000-582X.2015.05.020
    [20] Pang Zhengde, Lv Xuewei, Yan Zhiming, et al. Viscosity and free running temperature of ultra-high TiO2 bearing blast furnace slag[J]. Iron and Steel, 2020,55(8):181−186. (庞正德, 吕学伟, 严志明, 等. 超高TiO2高炉渣黏度及熔化性温度[J]. 钢铁, 2020,55(8):181−186. doi: 10.13228/j.boyuan.issn0449-749x.20200201
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  495
  • HTML全文浏览量:  67
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-18
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回