留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒含量对稀土处理X80管线钢微观组织和析出相的影响

王树丹 宋波 毛璟红

王树丹, 宋波, 毛璟红. 钒含量对稀土处理X80管线钢微观组织和析出相的影响[J]. 钢铁钒钛, 2022, 43(2): 125-132, 177. doi: 10.7513/j.issn.1004-7638.2022.02.019
引用本文: 王树丹, 宋波, 毛璟红. 钒含量对稀土处理X80管线钢微观组织和析出相的影响[J]. 钢铁钒钛, 2022, 43(2): 125-132, 177. doi: 10.7513/j.issn.1004-7638.2022.02.019
Wang Shudan, Song Bo, Mao Jinghong. Effect of vanadium content on microstructure and precipitation of rare earth treated X80 linepipe steels[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 125-132, 177. doi: 10.7513/j.issn.1004-7638.2022.02.019
Citation: Wang Shudan, Song Bo, Mao Jinghong. Effect of vanadium content on microstructure and precipitation of rare earth treated X80 linepipe steels[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 125-132, 177. doi: 10.7513/j.issn.1004-7638.2022.02.019

钒含量对稀土处理X80管线钢微观组织和析出相的影响

doi: 10.7513/j.issn.1004-7638.2022.02.019
基金项目: 国家自然科学基金(52074025)。
详细信息
    作者简介:

    宋波(1963-),工学博士,教授/博士生导师,北京科技大学教务处处长,主要从事冶金熔体物理化学、氧化物冶金、超重力冶金、稀土在冶金和材料中的应用等领域研究,E-mail:songbo@metall.ustb.edu.cn

  • 中图分类号: TF76,TF841.3

Effect of vanadium content on microstructure and precipitation of rare earth treated X80 linepipe steels

  • 摘要: 针对国内某X80管线钢的抗腐蚀问题,在加入稀土(0.02%)处理后,设计三种不同钒含量(0.05%、0.10%、0.15%)的试验钢,通过光学显微镜(OM)、扫描电镜(SEM)、Thermo-Calc热力学软件、Fatesage7.0热力学软件、透射电子显微镜-能谱仪(TEM-EDS)等试验仪器对钢中组织和夹杂物的观察分析,论述了稀土在钢中对针状铁素体的生成机理。通过热力学计算,研究不同钒含量梯度对试验钢微观组织和析出相的影响。通过电化学技术检测了不同钒含量试验钢在(3.5%)NaCl溶液中抗腐蚀性能。结果表明:稀土可以变质夹杂物,诱导针状铁素体的形成。钒可以细化晶粒,从而起到细晶强化的作用。通过透射电镜观察,析出相的数量和平均尺寸都随着钒含量的增加而增加,有效起到钉扎作用,从而提高钢的强度。通过极化曲线和交流阻抗曲线看出,试验钢的抗腐蚀性能随着钒含量的增加先增强后减弱。钒促进铁素体的形成,晶粒过细反而导致抗腐蚀性能减弱。
  • 图  1  锻态微观组织

    (a) OM ,V1钢;(b) OM ,V2钢;(c) OM ,V3钢;(d) SEM, V1钢;(e) SEM ,V2钢;(f) SEM ,V3钢

    Figure  1.  OM microstructure and SEM of experimental steels

    图  2  Factsage计算V2钢中夹杂物生成与温度间的关系

    Figure  2.  Relationship between inclusions formation and temperature in V2 steel calculated by Factsage

    图  3  V2试验钢中有效夹杂物的形态与成分分析

    Figure  3.  Morphology and composition analysis of effective inclusions in V2 experimental steel

    图  4  三种试验钢中平衡相与温度的关系

    (a) V1钢;(b) V2钢;(c) V3钢

    Figure  4.  Relationship between equilibrium phase and temperature in three experimental steel

    图  5  三种试验钢中析出相的形貌和能谱

    (a)、(d) V1钢,(b)、(e) V2钢;(c)、(f) V3钢

    Figure  5.  Morphology and energy spectrum of precipitates in three experimental steel

    图  6  三种试验钢中析出相形貌及尺寸分布

    (a)、(d)V1钢;(b)、(e)V2钢;(c)、(f)V3钢

    Figure  6.  Morphology and size distribution of precipitated phase in three experimental steels

    图  7  三种试验钢在3.5% (质量分数) NaCl溶液中腐蚀后的极化曲线

    Figure  7.  Polarization curves of the three experimental steels after corrosion in 3.5% (mass fraction) NaCl solution

    图  8  三种试验钢在3.5%NaCl 溶液中腐蚀后的Nyquist谱

    Figure  8.  Nyquist diagram of three experimental steels corroded in 3.5%NaCl solution

    表  1  三种试验钢的主要化学成分

    Table  1.   Main chemical compositions of the three experimental steels %

    编号CSiMnSMoNbTiMoCeV
    V10.040.141.670.00340.0940.0130.00840.0940.01680.045
    V20.040.141.670.00380.0940.0140.00840.0940.01710.092
    V30.040.141.670.00390.0950.0140.00850.0950.01650.134
    下载: 导出CSV

    表  2  三种试验钢中V(C,N)平衡相的析出温度以及最大析出摩尔分数

    Table  2.   Precipitation temperature and maximum precipitation mole fraction of the V(C,N)in the three experimental steels

    钢种析出温度/℃最大析出摩尔分数
    V17436.92×10−4
    V27781.52×10−3
    V37902.1×10−3
    下载: 导出CSV

    表  3  试验钢腐蚀极化曲线的拟合参数

    Table  3.   Fitting parameters of corrosion polarization curve of experimental steel

    钢种腐蚀电位/mV腐蚀电流密度/(μA·cm−2)
    V1−397.070834.122
    V2−491.5860.07
    V3−554.45560.204
    下载: 导出CSV
  • [1] Joakim Andersson, Stefan Gronkvist. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019,44:11901−11919. doi: 10.1016/j.ijhydene.2019.03.063
    [2] Liu Z Y, Wang X Z, Du C W, et al. Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments[J]. Materials Science and Engineering, 2016,658:348−354. doi: 10.1016/j.msea.2016.02.019
    [3] Yang Z X, Kan B, Li J X, et al. Hydrostatic pressure effects on stress corrosion cracking of X70 pipeline steel in a simulated deep-sea environment[J]. International Journal of Hydrogen Energy, 2017,42(44):27446−27457. doi: 10.1016/j.ijhydene.2017.09.061
    [4] Loidl M, Kolk O, Veith S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materials Science & Engineering Technology, 2011,42(12):1105−1110. doi: 10.1002/mawe.201100917
    [5] Zhao Mingchun, Shan Yiyin, Li Yuhai, et al. Effect of microstructure on stress corrosion cracking of sulphide in pipeline steel[J]. Journal of Metal, 2001,37(10):1087−1092. (赵明纯, 单以银, 李玉海, 等. 显微组织对管线钢硫化物应力腐蚀开裂的影响[J]. 金属学报, 2001,37(10):1087−1092. doi: 10.3321/j.issn:0412-1961.2001.10.018
    [6] Wang C, Wang X, Kang J, et al. Effect of austenitization conditions on the transformation behavior of low carbon steel containing Ti–Ca oxide particles[J]. Materials, 2019,12:1070. doi: 10.3390/ma12071070
    [7] Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel[J]. Corrosion Science, 2008,50(7):1865−1871. doi: 10.1016/j.corsci.2008.09.014
    [8] Zhang Xiaofeng, Tang Jianping, Han Chunpeng, et al. The role of rare earth in steel and the status of industrial production[J]. Rare Earth, 2021,42(4):117−130. (张晓峰, 唐建平, 韩春鹏, 等. 稀土在钢中作用及工业化生产现状浅析[J]. 稀土, 2021,42(4):117−130. doi: 10.16533/j.cnki.15-1099/tf.20210034
    [9] Yang Quanhai, Yang Jichun, Ding Haifeng, et al. Thermodynamic analysis and experimental study of inclusions in rare earth pipeline steel[J]. Rare Earth, 2018,39(2):96−101. (杨全海, 杨吉春, 丁海峰, 等. 稀土管线钢中夹杂物热力学分析及实验研究[J]. 稀土, 2018,39(2):96−101. doi: 10.16533/J.CNKI.15-1099/TF.201802013
    [10] Song M M, Song B, Xin W, et al. Effects of rare earth addition on microstructure of C-Mn steel[J]. Ironmak. Steelmak, 2015,42:594−599. doi: 10.1179/1743281215Y.0000000006
    [11] Lin Qin, Song Bo, Guo Xingmin, et al. Microalloying of rare earth in steel and its application prospect[J]. Rare Earth, 2001,22(4):31−36. (林勤, 宋波, 郭兴敏, 等. 钢中稀土微合金化作用与应用前景[J]. 稀土, 2001,22(4):31−36. doi: 10.16533/j.cnki.15-1099/tf.2001.04.004
    [12] Lin Qin, Wang Huaibin, Tang Li, et al. Study on the recombination of rare earth vanadium in microalloyed steel[J]. Chinese Journal of Rare Earth, 2001,19(2):146−149. (林勤, 王怀斌, 唐历, 等. 微合金钢中稀土钒复合作用的研究[J]. 中国稀土学报, 2001,19(2):146−149. doi: 10.3321/j.issn:1000-4343.2001.02.012
    [13] Xu Feng, Li Liwei, Xu Jinqiao, et al. Development status and development trend of high-grade acid resistant pipeline steel[J]. Iron and Steel Research, 2014,42(4):58−61. (徐锋, 李利巍, 徐进桥, 等. 高级别耐酸管线钢的开发现状及发展趋势[J]. 钢铁研究, 2014,42(4):58−61.
    [14] Cui Q Q, Wu J S, Xie D H, et al. Effect of nanosized NbC precipitates on hydrogen diffusion in X80 pipeline steel[J]. Materials, 2017,10(7):721. doi: 10.3390/ma10070721
    [15] Li L F, Song B, Cheng J, et al. Effects of vanadium precipitates on hydrogen trapping efficiency and hydrogen induced cracking resistance in X80 pipeline steel[J]. International Journal of Hydrogen Energy, 2018,43(36):17353−17363. doi: 10.1016/j.ijhydene.2018.07.110
    [16] Liu Shuai, Liu Jing, Huang Feng, et al. Control of submicron inclusion in pipeline steel and its influence on anti-HIC performance[J]. Hot Working Technology, 2019,48(4):52−56. (刘帅, 刘静, 黄峰, 等. 管线钢亚微米级夹杂物的控制及对抗HIC性能的影响[J]. 热加工工艺, 2019,48(4):52−56. doi: 10.14158/j.cnki.1001-3814.2019.04.012
    [17] Turk A, MartínSan D, Rivera-Díaz-del-CastilloPEJ, et al. Correlation between vanadium carbide size and hydrogen trapping in ferritic steel[J]. Scripta Materialia, 2018,152:112−116. doi: 10.1016/j.scriptamat.2018.04.013
    [18] Beidokhti B, Koukabi A H, Dolati A. Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline steel[J]. Journal of Materials Processing Technology, 2009,209:4027−4035. doi: 10.1016/j.jmatprotec.2008.09.021
    [19] Depover T, Verbeken K. Evaluation of the effect of V4C3 precipitates on the hydrogen induced mechanical degradation in Fe-C-V alloys[J]. Materials Science and Engineering, 2016,675:299−313. doi: 10.1016/j.msea.2016.08.053
    [20] Takahashi J, Kawakami K, Kobayashi Y. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel[J]. Acta Mater, 2018,153:193−204. doi: 10.1016/j.actamat.2018.05.003135
    [21] Cheng X B, Cheng X Y, Jiang C W, et al. Hydrogen diffusion and trapping in V-microalloyed mooring chain steels[J]. Mater. Lett, 2018,213:118−121. doi: 10.1016/j.matlet.2017.11.029
    [22] Zhang Zhengyan, Sun Xinjun, Yong Qilong, et al. Strengthening mechanism and precipitation behavior of nanoscale carbides in Nb-Mo microalloy high strength steel[J]. Acta Metallurgica Sinica, 2016,52(4):410−418. (张正延, 孙新军, 雍岐龙, 等. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为[J]. 金属学报, 2016,52(4):410−418. doi: 10.11900/0412.1961.2015.00482
    [23] Chen Y S, Haley D, Gerstls S A, et al. Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel[J]. Science, 2017,355:1196−1199. doi: 10.1126/science.aal2418
    [24] Kimura T, Kawabata F, Amano K, et al. The third-generation TMCP combined with fine inclusion metallurgy and development of heavy gauge H-shapes with excellent seismic-resistance for building structure[J]. Materia Japan, 1999,38(2):160−162. doi: 10.2320/materia.38.160
    [25] Liu Jian, Wang Huakun, Song Liqiu, et al. Research and application of vanadium nitrogen microalloying high strength steel[J]. Sichuan Metallurgy, 2006,28(1):24−27. (刘建, 王华昆, 宋立秋, 等. 钒氮微合金化高强度钢的研究及应用[J]. 四川冶金, 2006,28(1):24−27. doi: 10.3969/j.issn.1001-7208.2006.02.012
    [26] Kang Y, Jeong S, Kang J H, et al. Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds[J]. Metallurgical and Materials Transactions A, 2016,47A(6):2842−2854.
    [27] Yang Jichun, Yang Quanhai, Zhao Wei. Effect of yttrium on corrosion resistance of X100 pipeline steel[J]. Rare Earth, 2018,39(3):101−107. (杨吉春, 杨全海, 赵伟. 钇对 X100 管线钢抗腐蚀性能的影响[J]. 稀土, 2018,39(3):101−107. doi: 10.16533/J.CNKI.15-1099/TF.201803014
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  44
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回