留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ce/Ce-Zr夹杂物诱导高强船板钢中针状铁素体形核行为的研究

孟祥海 王伟 毕胜 李运刚

孟祥海, 王伟, 毕胜, 李运刚. Ce/Ce-Zr夹杂物诱导高强船板钢中针状铁素体形核行为的研究[J]. 钢铁钒钛, 2022, 43(2): 146-151. doi: 10.7513/j.issn.1004-7638.2022.02.022
引用本文: 孟祥海, 王伟, 毕胜, 李运刚. Ce/Ce-Zr夹杂物诱导高强船板钢中针状铁素体形核行为的研究[J]. 钢铁钒钛, 2022, 43(2): 146-151. doi: 10.7513/j.issn.1004-7638.2022.02.022
Meng Xianghai, Wang Wei, Bi Sheng, Li Yungang. Research on IAF nucleation behavior induced by Ce/Ce-Zr inclusion in high strength steel plate for shipbuilding[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 146-151. doi: 10.7513/j.issn.1004-7638.2022.02.022
Citation: Meng Xianghai, Wang Wei, Bi Sheng, Li Yungang. Research on IAF nucleation behavior induced by Ce/Ce-Zr inclusion in high strength steel plate for shipbuilding[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 146-151. doi: 10.7513/j.issn.1004-7638.2022.02.022

Ce/Ce-Zr夹杂物诱导高强船板钢中针状铁素体形核行为的研究

doi: 10.7513/j.issn.1004-7638.2022.02.022
基金项目: 国家自然科学基金(编号:51974129);河北省教育厅青年基金项目(编号:QN2021316);唐山市科技计划资助项目(编号:20130228b)。
详细信息
    作者简介:

    孟祥海(1983—),男,河北唐山人,博士,副教授,长期从事大线能量焊接用船板钢开发,E-mail:46957162@qq.com

    通讯作者:

    王伟(1983—),女,河北唐山人,从事焊接夹具设计及机械制造技术研究,E-mail:wwang302@163.com

  • 中图分类号: TF76,TF704.2

Research on IAF nucleation behavior induced by Ce/Ce-Zr inclusion in high strength steel plate for shipbuilding

  • 摘要: 研究了FH40高强船板钢经稀土合金化处理后夹杂物诱发铁素体的变化行为,利用扫描电子显微镜(SEM)和能量衍射谱(EDS)等手段观察分析了钢中稀土夹杂物的形貌特征以及诱发形成IAF的行为机制。研究结果表明:经Ce或Ce-Zr复合处理后,稀土复合夹杂物形状得到球化,且均能诱发针状铁素体形成;单独Ce处理形成的Al-Ce-O+MnS夹杂物诱导针状铁素体行为可用贫Mn区机制和惰性基底机理解释,而Ce-Zr复合处理形成的Ce-Zr-O+MnS夹杂物诱导针状铁素体行为只能用贫锰区机制解释。
  • 图  1  不同Ce和Zr含量的试验钢中复合夹杂物及其周围形成IAF的形貌

    Figure  1.  Morphology of IAF formed around composite inclusions in experimental steels with different Ce and Zr contents

    图  2  M2钢中Al-Ce-O+MnS夹杂物的线扫描结果

    Figure  2.  Linear scanning results of Ce-Zr-O+MnS inclusions in M2 steel

    图  3  M3钢中Ce-Zr-O+MnS夹杂物的线扫描结果

    Figure  3.  Linear scanning results of Ce-Zr-O+MnS inclusions in M3 steel

    表  1  试验钢实际化学成分

    Table  1.   Chemical compositions of experimental steels %

    试样CSiMnPSNiNbTiAlNCeZr
    M10.0630.2511.590.00960.00580.3030.03950.01270.0340.0078
    M20.0690.2451.570.00970.00550.2960.04010.01320.0340.00590.0580
    M30.0650.2471.580.00930.00560.2980.03950.01290.0310.00690.05760.0054
    下载: 导出CSV

    表  2  夹杂物的热膨胀系数(α)值(273~1273 K)

    Table  2.   Thermal expansion coefficient (α) values of inclusions(273~1 273 K)

    物质热膨胀系数×106物质热膨胀系数×106
    γ-Fe20.0~23.0Ce2S312.7
    TiN10Ce3S412.5
    SiO20.5La2O313.6
    Ti2O3≤10CeO213.2
    MnO·Al2O38Ce2O313.6
    2 MnO·2 Al2O3·5 SiO22.0LaS11.5
    莫来石Al2O3·SiO25.3Ce2O2S12.0
    La2S310.4La2O2S12.0
    La3S411.4CeAlO310.0
    CeS12.3LaAlO310.0
    下载: 导出CSV
  • [1] Jiang M Z, Yu Y C, Li H, et al. Effect of rare earth cerium addition on microstructures and mechanical properties of low carbon high manganese steels[J]. High Temperature Materials and Processes, 2017,36(2):145−153. doi: 10.1515/htmp-2015-0183
    [2] Milyutsa V G, Tsukanova V V, Malykhinab O Y, et al. Effect of complex inoculation of a high-strength shipbuilding steel on the composition and morphology of nonmetallic inclusions[J]. Inorganic Materials:Applied Research, 2014,5(6):554−561. doi: 10.1134/S2075113314060070
    [3] Yang Jialin, Jiang Mingzhen, Cui Zilong, et al. Effect of Ce addition on microstructures and properties of 65Mn steel[J]. Iron Steel Vanadium Titanium, 2015,36(6):141−149. (杨佳林, 姜名贞, 崔子龙, 等. 微量Ce对65Mn钢微观组织和力学性能的影响[J]. 钢铁钒钛, 2015,36(6):141−149. doi: 10.7513/j.issn.1004-7638.2015.06.026
    [4] Yang Jichun, Yu Haicun, Gao Jianjun. Effects of Ce on the microstructure and mechanical mroperties of A36 ship plate steel[J]. Chinese Rare Earths, 2015,36(5):43−48. (杨吉春, 余海存, 高建军. Ce对A36船板钢显微组织和力学性能的影响[J]. 稀土, 2015,36(5):43−48.
    [5] Meng Xianghai, Wang Zhe, Bi Sheng, et al. Research progress on microstructure and properties of high strength ship plate steel treated by rare earth Ce[J]. Hot Working Technology, 2021,50,(1):1−5. (孟祥海, 王哲, 毕胜, 等. 稀土Ce处理的高强船板钢的组织与性能研究进展[J]. 热加工工艺, 2021,50,(1):1−5.
    [6] Byun J S, Shim J H, Cho Y W, et al. Non-metallic inclusion and intra-granular nucleation of ferrite in Ti-killed C-Mn steel[J]. Acta Materialia, 2003,51(6):1593−1606. doi: 10.1016/S1359-6454(02)00560-8
    [7] Madariaga I, Gutierrez I, Andres C G, et al. Acicular ferriteformation in a medium carbon steel with a two stage continuous cooling[J]. Scripta Materialia, 1999,41(3):229−235. doi: 10.1016/S1359-6462(99)00149-9
    [8] Kivio M, Holppa L, Iung T. Addition of dispersoid titanium oxide inclusions in steel and their influence on grain refinement[J]. Metallurgical and Materials Transactions B, 2010,41(6):1194−1204. doi: 10.1007/s11663-010-9416-y
    [9] Sarma D S, Karasev A V, Jonsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. ISIJ International, 2009,49(7):1063−1074. doi: 10.2355/isijinternational.49.1063
    [10] Liu Y Q, Wang L J, Chou K C. Effect of cerium on the cleanliness of spring steel used in fastener of high-speed railway[J]. Journal of Rare Earths, 2014,32(8):759. doi: 10.1016/S1002-0721(14)60137-X
    [11] Grong Q, Kolbeinsen L, Casper Van Der Eijk, et al. Microstructure control of steels through dispersoid metallurgy using novel grain refining alloys[J]. ISIJ International, 2006,46(6):824−831. doi: 10.2355/isijinternational.46.824
    [12] Thewlis G. Effect of cerium sulphide particle dispersions on acicular ferrite microstructure development in steels[J]. Materials Science and Technology, 2006,22(2):153−166. doi: 10.1179/026708306X81432
    [13] Wakoh M, Sawai T, Mizoguchi S. Effect of content on the MnS precipitation in steel with oxide nuclei[J]. ISIJ International, 1996,36(8):1014−1021.
    [14] Lee J L, Pan Y T. Effect of sulfur content on the microstructure and toughness of simulated heat-affected zone in Ti-killed steels[J]. Metallurgical Transactions A, 1993,24(6):1399−1408. doi: 10.1007/BF02668208
    [15] Tomita Y, Saito N, Tsuzuki T, et al. Improvement in HAZ toughness of steel by TiN-MnS addition[J]. ISIJ International, 1994,34(10):829−835. doi: 10.2355/isijinternational.34.829
    [16] Deng X X, Jiang M, Wang X H. Mechanisms of inclusion evolution and intra-granular acicularferrite formation in steels containing rare earth elements[J]. Acta Metallurgica Sinica(English Letters), 2012,25(3):241−248.
    [17] Song M M, Song B, Hu C L, et al. Formation of acicular ferrite in Mg treated Ti-bearing C-Mn steel[J]. ISIJ International, 2015,55(7):1468−1473. doi: 10.2355/isijinternational.55.1468
    [18] Ohashi T, Hiromoto T, Fujii H, et al. Effect of oxides on nucleation behaviour in supercooled iron[J]. Tetsu-to-Haganne, 1976,62(6):614−623. doi: 10.2355/tetsutohagane1955.62.6_614
    [19] Huang Cheng, Song Bo, Mao Jinghong, et al. Study on the mathematical model of inhomogeneous nucleation wetting angle[J]. Science In China-Ser. Engineering & Materials Science, 2004,34(7):737−742. (黄诚, 宋波, 毛境红, 等. 非均质形核润湿角数学模型研究[J]. 中国科学:E辑, 2004,34(7):737−742.
    [20] Jiao X Y, Fu W T, Shao W, et al. First-principles calculation on β-Fe/La2O3 interface properties and austenite refinement mechanism by La2O3[J]. Materials Chemistry and Physics, 2021,259:124194. doi: 10.1016/j.matchemphys.2020.124194
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  13
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回