留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究

贾海深 罗文翠 张继林 易湘斌

贾海深, 罗文翠, 张继林, 易湘斌. 冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究[J]. 钢铁钒钛, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
引用本文: 贾海深, 罗文翠, 张继林, 易湘斌. 冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究[J]. 钢铁钒钛, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
Jia Haishen, Luo Wencui, Zhang Jilin, Yi Xiangbin. Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
Citation: Jia Haishen, Luo Wencui, Zhang Jilin, Yi Xiangbin. Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027

冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究

doi: 10.7513/j.issn.1004-7638.2022.02.027
基金项目: 国家自然科学基金项目(51865026);甘肃省高等学校创新基金项目(2021A-156、2021B-319);甘肃省高等学校产业支撑(2021-CYZC-52);兰州工业学院“启智”人才培养计划(2018QZ-03)。
详细信息
    作者简介:

    贾海深(1982—),男,河南周口人,讲师,硕士,主要从事金属材料力学性能研究与切削加工,E-mail: jhsk9365@126.com

    通讯作者:

    易湘斌(1979—),男,甘肃兰州人,副教授,硕士,主要从事金属切削与力学性能研究,E-mail: 530064133@qq.com

  • 中图分类号: TF76

Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load

  • 摘要: 利用UTM5305万能试验机和剖分式 Hopkinson 压杆装置,对022Cr18Ni14Mo2不锈钢进行了准静态及动态下的压缩试验研究,探讨了其应变硬化特征及流动应力对应变率的依赖程度,并结合应变强化指数$ n $和应变率敏感性系数$ \beta $两个参量进行定量分析。依据上述分析结果,对传统的J-C本构模型进行修正,构建了一种新型的本构模型。借助试验数据对修正后的本构模型进行参数识别,将模型预测值与试验值进行对比分析,运用本构模型的相关系数(R)和平均相对误差(AARE)两个参量对其评价。结果表明:该试样具有明显应变硬化特性和显著的应变率敏感性,应变强化指数受应变、应变率的支配,应变率敏感性系数随应变率的增加而增加,且增加的幅度逐渐减小。修正后本构模型的相关系数(R)为0.9896,平均相对误差(AARE)为3.29%,能够较好地描述试样高温、高应变率下的流变行为。
  • 图  1  准静态下的应力-应变曲线

    Figure  1.  Stress-strain curve in quasi-static state

    图  2  温度在25 ℃不同应变率下的应力-应变曲线

    Figure  2.  Stress-strain curves at different strain rates (T=25 ℃)

    图  3  温度在25 ℃时5000 s−1下试样冲击后的微观组织

    Figure  3.  The microstructure of the sample after impact at 5000 s−1and at 25 ℃

    图  4  温度在400 ℃时不同应变率下应力-应变曲线

    Figure  4.  Stress-strain curves at different strain rates (T=400℃)

    图  5  修正的J-C本构模型第一项拟合曲线

    Figure  5.  The first fitting curve of the modified JC constitutive model

    图  6  修正的JC本构模型第二项拟合曲线

    Figure  6.  The second fitting curve of the modified JC constitutive model

    图  7  修正的JC本构模型第三项拟合曲线

    Figure  7.  The third fitting curve of the modified JC constitutive model

    图  8  不同应变率下应力-应变曲线试验值与修正J-C模型预测值的对比

    Figure  8.  Comparison of experimental values of stress-strain curves and predicted values of modified J-C model at different strain rates

    图  9  试验值与修正J-C模型预测值间的相关性

    Figure  9.  Correlation between experimental values and modified J-C model prediction values

    表  1  022Cr18Ni14Mo2不锈钢主要化学成分

    Table  1.   Main chemical compositions of 022Cr18Ni14Mo2 stainless steel %

    CSiMnPSNiCr
    0.080.752.000.0450.038.2218.89
    下载: 导出CSV

    表  2  不同应变率、应变处的应变硬化指数

    Table  2.   The strain hardening index of steel impacted at different strain rate and strain


    $ \dot \varepsilon $/s−1
    n
    ε=0.1ε=0.15ε=0.20ε=0.25ε=0.30
    0.01
    2 000
    3000
    4000
    5000
    0.8625
    0.8458
    0.7946
    0.7654
    0.7537
    0.8025
    0.8679
    0.7609
    0.7401
    0.7307
    0.7258

    0.6918
    0.6459
    0.6329
    0.6984

    0.6539
    0.6016
    0.5846
    0.6127

    0.5569
    0.5409
    0.5284
    下载: 导出CSV

    表  3  不同应变率下的应变率敏感性系数

    Table  3.   Strain rate sensitivity coefficient at different strain rates

    $ \dot \varepsilon $/s−1应变率敏感性系数$ \beta $
    2 000
    3000
    4000
    5000
    11.1538
    18.6619
    22.9458
    25.0159
    下载: 导出CSV

    表  4  修正的J-C本构模型平均绝对误差值

    Table  4.   The average absolute error value of the modified J-C constitutive model

    $ \dot \varepsilon $/ s−1平均绝对误差/MPa
    25 ℃150 ℃275 ℃400 ℃
    2 000
    3000
    4000
    5000
    15.66077754
    46.80494841
    35.88938985
    27.73777816
    14.22130679
    13.12439042
    12.00604471
    16.33486636
    22.0703322632919
    15.3002801865349
    10.0440919796945
    10.7519804140126
    19.5186443920757
    18.3288671876173
    29.0687297003203
    24.8034712635893
    下载: 导出CSV
  • [1] Elmesalamy A S, Francis J A, Li L. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel[J]. International Journal of Pressure Vessels and Piping, 2014,113:49−59. doi: 10.1016/j.ijpvp.2013.11.002
    [2] Shang Y, Yuan Y, Li D, et al. Effects of scanning speed on in vitro biocompatibility of 316L stainless steel parts elaborated by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2017,92(9):4379−4285.
    [3] Otero E, Pardo A, Utrilla M V, et al. Corrosion behaviour of AISI 304 L and AISI 316L stainless steels prepared by powder metallurgy in the presence of sulphuric and phosphoric acid[J]. Corrosion Science, 1998,40(8):1421−1434. doi: 10.1016/S0010-938X(98)00047-X
    [4] Ehab Ellobody, Ben Young. Structural performance of cold-formed high strength stainless steel columns[J]. Journal of Constructional Steel Research, 2005,61(2):1631−1649.
    [5] Liu Zhenbao, Liang Jianxiong, Su Jie, et al. Research and development status of high-strength stainless steel[J]. Acta Metallurgica Sinica, 2020,56(4):449−554. (刘振宝, 梁剑雄, 苏杰, 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020,56(4):449−554.
    [6] Guo Pengcheng, Cao Shufen, Ye Tuo, et al. Mechanical constitutive equation and simulation of AM80 magnesium alloy under high speed impact load[J]. The Chinese Journal of Nonferrous Metals, 2017,27(6):1075−1082. (郭鹏程, 曹淑芬, 叶拓, 等. 高速冲击载荷下AM80镁合金的力学本构及仿真模拟[J]. 中国有色金属学报, 2017,27(6):1075−1082.
    [7] Noble J P, Goldthorpe B D, Church P. The use of the Hopkinson bar to validate constitutive relations at high rates of strain[J]. Journal of the Mechanics & Physics of Solids, 1999,47(5):1187−1206.
    [8] Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994,77(1):263−267. doi: 10.1111/j.1151-2916.1994.tb06987.x
    [9] Li Yulong, Suo Tao, Guo Weiguo, et al. Hopkinson pressure bar system for determining the dynamic performance of materials at high temperature and high strain rate[J]. Explosion and Shock, 2005,25(6):487−492. (李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson压杆系统[J]. 爆炸与冲击, 2005,25(6):487−492.
    [10] Yan Qiushi, Sun Bowen, Yang Lu. Study on dynamic mechanical behavior of structural stainless steel at elevated temperature and high strain rate[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019,47(5):128−132. (闫秋实, 孙博文, 杨璐. 高温高应变率下建筑不锈钢动态力学性能研究[J]. 华中科技大学学报(自然科学版), 2019,47(5):128−132.
    [11] Wu Liang, Hu Yisen, Ji Xiang, et al. Research on dynamic mechanical properties and constitutive model of martensitic precipitation hardening stainless steel FV520B[J]. Mechanical Strength, 2018,40(3):79−83. (吴亮, 胡毅森, 纪翔, 等. 马氏体沉淀硬化不锈钢FV520B动态力学性能及本构模型的研究[J]. 机械强度, 2018,40(3):79−83.
    [12] Lee W S, Chen T H, Lin C F, et al. Dynamic mechanical response of biomedical 316L stainless steel as function of strain rate and temperature[J]. Bioinorganic Chemistry and Applications, 2011,2011(8):1−13.
    [13] He Zhu, Zhao Shougeng, Yang Jialing, et al. Research on dynamic mechanical properties of 0Cr17Ni4Cu4Nb stainless steel[J]. Journal of Materials Science and Engineering, 2007,25(3):418−421. (何著, 赵寿根, 杨嘉陵, 等. 0Cr17Ni4Cu4Nb不锈钢动态力学性能研究[J]. 材料科学与工程学报, 2007,25(3):418−421. doi: 10.3969/j.issn.1673-2812.2007.03.024
    [14] Peng J, Li K S, Pei J F, et al. Temperature-dependent SRS behavior of 316 L and its constitutive model[J]. Acta Metallurgica Sinica (English Letters), 2018,31(3):234−244. doi: 10.1007/s40195-017-0697-x
    [15] 周惠久, 黄明志. 金属材料强度[M]. 北京: 科学出版社, 1989.

    Zhou Huijiu, Huang Mingzhi. Strength of metal materials[M]. Beijing: Science Press, 1989.
    [16] 李庆生. 材料强度学[M]. 太原: 山西科学教育出版社, 1990.

    Li Qingsheng. Material strength[M]. Taiyuan: Shanxi Science Education Press, 1990.
    [17] Fang Jian, Wei Yijing, Wang Chengzhong. Analytical measurement and mechanical analysis of tensile strain hardening index[J]. Journal of Plasticity Engineering, 2003,10(3):12−17. (方健, 魏毅静, 王承忠. 拉伸应变硬化指数的解析测定及力学分析[J]. 塑性工程学报, 2003,10(3):12−17. doi: 10.3969/j.issn.1007-2012.2003.03.003
    [18] Sun Xuewei, Ling Yongzhuo, Sun Jisong, et al. A method of determining strain-hardening exponents[J]. Mechanical Strength, 1995,17(4):27−28. (孙学伟, 令永卓, 孙吉松, 等. 材料硬化指数n的确定方法[J]. 机械强度, 1995,17(4):27−28.
    [19] 冯端. 金属物理学-金属力学性能[M]. 北京: 科学出版社, 1999.

    Feng Duan. Metal physics-mechanical properties of metals[M]. Beijing: Science Press, 1999.
    [20] 史巨元. 钢的动态力学性能及应用[M]. 北京: 冶金工业出版社, 1993.

    Shi Juyuan. The dynamic mechanical properties and application of steel[M]. Beijing: Metallurgical Industry Press, 1993.
    [21] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983,21:541−548.
    [22] Shu Chang, Cheng Li, Xu Yu. Research on Johnson-Cook constitutive model parameter estimation[J]. The Chinese Journal of Nonferrous Metals, 2020,30(5):1073−1083. (舒畅, 程礼, 许煜. Johnson-Cook本构模型参数估计研究[J]. 中国有色金属学报, 2020,30(5):1073−1083.
    [23] Shokry, Abdallah. A modified Johnson–Cook model for flow behavior of alloy 800 H at intermediate strain rates and high temperatures[J]. Journal of Materials Engineering and Performance, 2017,26(12):5723−5730. doi: 10.1007/s11665-017-3076-x
    [24] Zhang Bing, Yue Lei, Chen Hanfeng, et al. Hot deformation behavior of as-cast GH4169 alloy and comparison of three constitutive models[J]. Rare Metal Materials and Engineering, 2021,50(1):212−222. (张兵, 岳磊, 陈韩锋, 等. 铸态GH4169合金热变形行为及三种本构模型对比[J]. 稀有金属材料与工程, 2021,50(1):212−222.
    [25] Sheikhali A H, Morakkabati M. Constitutive modeling for hot working behavior of SP-700 titanium alloy[J]. Journal of Materials Engineering and Performance, 2019,28(10):6525−6537. doi: 10.1007/s11665-019-04355-x
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  19
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回