中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究

贾海深 罗文翠 张继林 易湘斌

贾海深, 罗文翠, 张继林, 易湘斌. 冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究[J]. 钢铁钒钛, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
引用本文: 贾海深, 罗文翠, 张继林, 易湘斌. 冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究[J]. 钢铁钒钛, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
Jia Haishen, Luo Wencui, Zhang Jilin, Yi Xiangbin. Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027
Citation: Jia Haishen, Luo Wencui, Zhang Jilin, Yi Xiangbin. Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(2): 178-185. doi: 10.7513/j.issn.1004-7638.2022.02.027

冲击载荷下022Cr18Ni14Mo2不锈钢动态力学特性及其本构模型研究

doi: 10.7513/j.issn.1004-7638.2022.02.027
基金项目: 国家自然科学基金项目(51865026);甘肃省高等学校创新基金项目(2021A-156、2021B-319);甘肃省高等学校产业支撑(2021-CYZC-52);兰州工业学院“启智”人才培养计划(2018QZ-03)。
详细信息
    作者简介:

    贾海深(1982—),男,河南周口人,讲师,硕士,主要从事金属材料力学性能研究与切削加工,E-mail: jhsk9365@126.com

    通讯作者:

    易湘斌(1979—),男,甘肃兰州人,副教授,硕士,主要从事金属切削与力学性能研究,E-mail: 530064133@qq.com

  • 中图分类号: TF76

Study on dynamic mechanical properties and constitutive model of 022Cr18Ni14Mo2 stainless steel under impact load

  • 摘要: 利用UTM5305万能试验机和剖分式 Hopkinson 压杆装置,对022Cr18Ni14Mo2不锈钢进行了准静态及动态下的压缩试验研究,探讨了其应变硬化特征及流动应力对应变率的依赖程度,并结合应变强化指数$ n $和应变率敏感性系数$ \beta $两个参量进行定量分析。依据上述分析结果,对传统的J-C本构模型进行修正,构建了一种新型的本构模型。借助试验数据对修正后的本构模型进行参数识别,将模型预测值与试验值进行对比分析,运用本构模型的相关系数(R)和平均相对误差(AARE)两个参量对其评价。结果表明:该试样具有明显应变硬化特性和显著的应变率敏感性,应变强化指数受应变、应变率的支配,应变率敏感性系数随应变率的增加而增加,且增加的幅度逐渐减小。修正后本构模型的相关系数(R)为0.9896,平均相对误差(AARE)为3.29%,能够较好地描述试样高温、高应变率下的流变行为。
  • 图  1  准静态下的应力-应变曲线

    Figure  1.  Stress-strain curve in quasi-static state

    图  2  温度在25 ℃不同应变率下的应力-应变曲线

    Figure  2.  Stress-strain curves at different strain rates (T=25 ℃)

    图  3  温度在25 ℃时5000 s−1下试样冲击后的微观组织

    Figure  3.  The microstructure of the sample after impact at 5000 s−1and at 25 ℃

    图  4  温度在400 ℃时不同应变率下应力-应变曲线

    Figure  4.  Stress-strain curves at different strain rates (T=400℃)

    图  5  修正的J-C本构模型第一项拟合曲线

    Figure  5.  The first fitting curve of the modified JC constitutive model

    图  6  修正的JC本构模型第二项拟合曲线

    Figure  6.  The second fitting curve of the modified JC constitutive model

    图  7  修正的JC本构模型第三项拟合曲线

    Figure  7.  The third fitting curve of the modified JC constitutive model

    图  8  不同应变率下应力-应变曲线试验值与修正J-C模型预测值的对比

    Figure  8.  Comparison of experimental values of stress-strain curves and predicted values of modified J-C model at different strain rates

    图  9  试验值与修正J-C模型预测值间的相关性

    Figure  9.  Correlation between experimental values and modified J-C model prediction values

    表  1  022Cr18Ni14Mo2不锈钢主要化学成分

    Table  1.   Main chemical compositions of 022Cr18Ni14Mo2 stainless steel %

    CSiMnPSNiCr
    0.080.752.000.0450.038.2218.89
    下载: 导出CSV

    表  2  不同应变率、应变处的应变硬化指数

    Table  2.   The strain hardening index of steel impacted at different strain rate and strain


    $ \dot \varepsilon $/s−1
    n
    ε=0.1ε=0.15ε=0.20ε=0.25ε=0.30
    0.01
    2 000
    3000
    4000
    5000
    0.8625
    0.8458
    0.7946
    0.7654
    0.7537
    0.8025
    0.8679
    0.7609
    0.7401
    0.7307
    0.7258

    0.6918
    0.6459
    0.6329
    0.6984

    0.6539
    0.6016
    0.5846
    0.6127

    0.5569
    0.5409
    0.5284
    下载: 导出CSV

    表  3  不同应变率下的应变率敏感性系数

    Table  3.   Strain rate sensitivity coefficient at different strain rates

    $ \dot \varepsilon $/s−1应变率敏感性系数$ \beta $
    2 000
    3000
    4000
    5000
    11.1538
    18.6619
    22.9458
    25.0159
    下载: 导出CSV

    表  4  修正的J-C本构模型平均绝对误差值

    Table  4.   The average absolute error value of the modified J-C constitutive model

    $ \dot \varepsilon $/ s−1平均绝对误差/MPa
    25 ℃150 ℃275 ℃400 ℃
    2 000
    3000
    4000
    5000
    15.66077754
    46.80494841
    35.88938985
    27.73777816
    14.22130679
    13.12439042
    12.00604471
    16.33486636
    22.0703322632919
    15.3002801865349
    10.0440919796945
    10.7519804140126
    19.5186443920757
    18.3288671876173
    29.0687297003203
    24.8034712635893
    下载: 导出CSV
  • [1] Elmesalamy A S, Francis J A, Li L. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel[J]. International Journal of Pressure Vessels and Piping, 2014,113:49−59. doi: 10.1016/j.ijpvp.2013.11.002
    [2] Shang Y, Yuan Y, Li D, et al. Effects of scanning speed on in vitro biocompatibility of 316L stainless steel parts elaborated by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2017,92(9):4379−4285.
    [3] Otero E, Pardo A, Utrilla M V, et al. Corrosion behaviour of AISI 304 L and AISI 316L stainless steels prepared by powder metallurgy in the presence of sulphuric and phosphoric acid[J]. Corrosion Science, 1998,40(8):1421−1434. doi: 10.1016/S0010-938X(98)00047-X
    [4] Ehab Ellobody, Ben Young. Structural performance of cold-formed high strength stainless steel columns[J]. Journal of Constructional Steel Research, 2005,61(2):1631−1649.
    [5] Liu Zhenbao, Liang Jianxiong, Su Jie, et al. Research and development status of high-strength stainless steel[J]. Acta Metallurgica Sinica, 2020,56(4):449−554. (刘振宝, 梁剑雄, 苏杰, 等. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020,56(4):449−554.
    [6] Guo Pengcheng, Cao Shufen, Ye Tuo, et al. Mechanical constitutive equation and simulation of AM80 magnesium alloy under high speed impact load[J]. The Chinese Journal of Nonferrous Metals, 2017,27(6):1075−1082. (郭鹏程, 曹淑芬, 叶拓, 等. 高速冲击载荷下AM80镁合金的力学本构及仿真模拟[J]. 中国有色金属学报, 2017,27(6):1075−1082.
    [7] Noble J P, Goldthorpe B D, Church P. The use of the Hopkinson bar to validate constitutive relations at high rates of strain[J]. Journal of the Mechanics & Physics of Solids, 1999,47(5):1187−1206.
    [8] Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994,77(1):263−267. doi: 10.1111/j.1151-2916.1994.tb06987.x
    [9] Li Yulong, Suo Tao, Guo Weiguo, et al. Hopkinson pressure bar system for determining the dynamic performance of materials at high temperature and high strain rate[J]. Explosion and Shock, 2005,25(6):487−492. (李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson压杆系统[J]. 爆炸与冲击, 2005,25(6):487−492.
    [10] Yan Qiushi, Sun Bowen, Yang Lu. Study on dynamic mechanical behavior of structural stainless steel at elevated temperature and high strain rate[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2019,47(5):128−132. (闫秋实, 孙博文, 杨璐. 高温高应变率下建筑不锈钢动态力学性能研究[J]. 华中科技大学学报(自然科学版), 2019,47(5):128−132.
    [11] Wu Liang, Hu Yisen, Ji Xiang, et al. Research on dynamic mechanical properties and constitutive model of martensitic precipitation hardening stainless steel FV520B[J]. Mechanical Strength, 2018,40(3):79−83. (吴亮, 胡毅森, 纪翔, 等. 马氏体沉淀硬化不锈钢FV520B动态力学性能及本构模型的研究[J]. 机械强度, 2018,40(3):79−83.
    [12] Lee W S, Chen T H, Lin C F, et al. Dynamic mechanical response of biomedical 316L stainless steel as function of strain rate and temperature[J]. Bioinorganic Chemistry and Applications, 2011,2011(8):1−13.
    [13] He Zhu, Zhao Shougeng, Yang Jialing, et al. Research on dynamic mechanical properties of 0Cr17Ni4Cu4Nb stainless steel[J]. Journal of Materials Science and Engineering, 2007,25(3):418−421. (何著, 赵寿根, 杨嘉陵, 等. 0Cr17Ni4Cu4Nb不锈钢动态力学性能研究[J]. 材料科学与工程学报, 2007,25(3):418−421. doi: 10.3969/j.issn.1673-2812.2007.03.024
    [14] Peng J, Li K S, Pei J F, et al. Temperature-dependent SRS behavior of 316 L and its constitutive model[J]. Acta Metallurgica Sinica (English Letters), 2018,31(3):234−244. doi: 10.1007/s40195-017-0697-x
    [15] 周惠久, 黄明志. 金属材料强度[M]. 北京: 科学出版社, 1989.

    Zhou Huijiu, Huang Mingzhi. Strength of metal materials[M]. Beijing: Science Press, 1989.
    [16] 李庆生. 材料强度学[M]. 太原: 山西科学教育出版社, 1990.

    Li Qingsheng. Material strength[M]. Taiyuan: Shanxi Science Education Press, 1990.
    [17] Fang Jian, Wei Yijing, Wang Chengzhong. Analytical measurement and mechanical analysis of tensile strain hardening index[J]. Journal of Plasticity Engineering, 2003,10(3):12−17. (方健, 魏毅静, 王承忠. 拉伸应变硬化指数的解析测定及力学分析[J]. 塑性工程学报, 2003,10(3):12−17. doi: 10.3969/j.issn.1007-2012.2003.03.003
    [18] Sun Xuewei, Ling Yongzhuo, Sun Jisong, et al. A method of determining strain-hardening exponents[J]. Mechanical Strength, 1995,17(4):27−28. (孙学伟, 令永卓, 孙吉松, 等. 材料硬化指数n的确定方法[J]. 机械强度, 1995,17(4):27−28.
    [19] 冯端. 金属物理学-金属力学性能[M]. 北京: 科学出版社, 1999.

    Feng Duan. Metal physics-mechanical properties of metals[M]. Beijing: Science Press, 1999.
    [20] 史巨元. 钢的动态力学性能及应用[M]. 北京: 冶金工业出版社, 1993.

    Shi Juyuan. The dynamic mechanical properties and application of steel[M]. Beijing: Metallurgical Industry Press, 1993.
    [21] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983,21:541−548.
    [22] Shu Chang, Cheng Li, Xu Yu. Research on Johnson-Cook constitutive model parameter estimation[J]. The Chinese Journal of Nonferrous Metals, 2020,30(5):1073−1083. (舒畅, 程礼, 许煜. Johnson-Cook本构模型参数估计研究[J]. 中国有色金属学报, 2020,30(5):1073−1083.
    [23] Shokry, Abdallah. A modified Johnson–Cook model for flow behavior of alloy 800 H at intermediate strain rates and high temperatures[J]. Journal of Materials Engineering and Performance, 2017,26(12):5723−5730. doi: 10.1007/s11665-017-3076-x
    [24] Zhang Bing, Yue Lei, Chen Hanfeng, et al. Hot deformation behavior of as-cast GH4169 alloy and comparison of three constitutive models[J]. Rare Metal Materials and Engineering, 2021,50(1):212−222. (张兵, 岳磊, 陈韩锋, 等. 铸态GH4169合金热变形行为及三种本构模型对比[J]. 稀有金属材料与工程, 2021,50(1):212−222.
    [25] Sheikhali A H, Morakkabati M. Constitutive modeling for hot working behavior of SP-700 titanium alloy[J]. Journal of Materials Engineering and Performance, 2019,28(10):6525−6537. doi: 10.1007/s11665-019-04355-x
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  56
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回