中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膨润土改性制备多孔结构钛锂离子筛前驱体

黄成华 李燕 张菁菁 税亿 吴娜 张理元

黄成华, 李燕, 张菁菁, 税亿, 吴娜, 张理元. 膨润土改性制备多孔结构钛锂离子筛前驱体[J]. 钢铁钒钛, 2022, 43(3): 1-8. doi: 10.7513/j.issn.1004-7638.2022.03.001
引用本文: 黄成华, 李燕, 张菁菁, 税亿, 吴娜, 张理元. 膨润土改性制备多孔结构钛锂离子筛前驱体[J]. 钢铁钒钛, 2022, 43(3): 1-8. doi: 10.7513/j.issn.1004-7638.2022.03.001
Huang Chenghua, Li Yan, Zhang Jingjing, Shui Yi, Wu Na, Zhang Liyuan. Synthesis of porous bentonite modified titanium-lithium ion sieve precursor[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 1-8. doi: 10.7513/j.issn.1004-7638.2022.03.001
Citation: Huang Chenghua, Li Yan, Zhang Jingjing, Shui Yi, Wu Na, Zhang Liyuan. Synthesis of porous bentonite modified titanium-lithium ion sieve precursor[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 1-8. doi: 10.7513/j.issn.1004-7638.2022.03.001

膨润土改性制备多孔结构钛锂离子筛前驱体

doi: 10.7513/j.issn.1004-7638.2022.03.001
基金项目: 四川省科技计划项目 (项目号2019YJ0383)。
详细信息
    作者简介:

    黄成华 (1963—),女,四川资中人,本科,副教授,主要从事离子交换吸附材料研究,E-mail:758361920@qq.com

    通讯作者:

    张理元,博士,副教授,E-mail:zhangliyuansir@126.com

  • 中图分类号: TF823,TQ424

Synthesis of porous bentonite modified titanium-lithium ion sieve precursor

  • 摘要: 以Ti(SO4)2为钛源,CH3COOLi·2H2O为锂源,NH3·H2O为沉淀剂,H2O2为络合剂,采用沉淀胶溶法制备了钛酸锂前驱体溶胶,添加膨润土,经搅拌、陈化、干燥、煅烧后得到膨润土改性Li2TiO3粉体。研究了络合剂H2O2与Ti的摩尔比(R)、煅烧温度、膨润土与溶胶的固液比对Li2TiO3的表面形貌及晶体结构的影响。采用扫描电镜、X射线衍射、热重-差示扫描量热、红外光谱对样品进行表征。结果表明,当R=6时,未改性的Li2TiO3在750 ℃煅烧下,晶体结构最完整。按1.67 g/L的固液比添加膨润土对样品进行改性后,煅烧温度为750 ℃时各晶面结晶最完整,得到表面呈均匀多孔结构的Li2TiO3
  • 图  1  H2O2与Ti的摩尔比(R)不同时的Li2TiO3的SEM形貌

    Figure  1.  SEM images of Li2TiO3 with different molar ratios of H2O2 to Ti

    (a) R=3;(b) R=4;(c) R=5;(d) R=6;(e) R=7;(f) R=9

    图  2  H2O2与Ti的摩尔比不同时的Li2TiO3的XRD谱

    Figure  2.  XRD patterns of Li2TiO3 with different molar ratios of H2O2 to Ti

    (a) R=3;(b) R=4;(c) R=5;(d) R=6;(e) R=7;(f) R=9

    图  3  膨润土-Li2TiO3在不同煅烧温度下的XRD谱(固液比为1.667 g/L,R=6)

    Figure  3.  XRD patterns of bentonite-Li2TiO3 calcined at different temperatures with a solid-to-liquid ratio of 1.667 g/L and R value of 6

    (a) 600 ℃;(b) 650 ℃;(c) 700 ℃; (d) 750 ℃;(e) 800 ℃;(f) 900 ℃

    图  4  膨润土-Li2TiO3热重-差示扫描量热曲线

    Figure  4.  TG-DSC curve of bentonite-Li2TiO3

    图  5  按不同固液比添加膨润土改性处理的Li2TiO3的XRD谱(R=6)

    Figure  5.  XRD patterns of Li2TiO3 modified by adding bentonite at different solid-to-liquid ratios with R value of 6 value of 6

    (a) 0.333 g/L;(b) 1 g/L;(c) 1.667 g/L;(d) 2.5 g/L;(e) 3.333 g/L

    图  6  按不同固液比添加膨润土改性处理的Li2TiO3的SEM形貌(R=6)

    (a) 煅烧后膨润土;(b) 0.333 g/L;(c) 1 g/L;(d) 1.667 g/L;(e) 2.5 g/L;(f) 3.333 g/L

    Figure  6.  SEM images of Li2TiO3 modified by adding bentonite at different solid-liquid ratios with R value of 6

    图  7  Li2TiO3和膨润土-Li2TiO3(1.667 g/ L)的FTIR谱

    (a) Li2TiO3 ; (b) 膨润土-Li2TiO3

    Figure  7.  FTIR spectra of Li2TiO3 and bentonite-Li2TiO3

  • [1] Martin G, Rentsch L, Hoeck M, et al. Lithium market research–global supply, future demand and price development[J]. Energy Storage Materials, 2017,6:171−179. doi: 10.1016/j.ensm.2016.11.004
    [2] Swain B. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017,172:388−403. doi: 10.1016/j.seppur.2016.08.031
    [3] Zhang Y, Hu Y H, Sun N, et al. A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine[J]. Hydrometallurgy, 2019,187:125−133. doi: 10.1016/j.hydromet.2019.05.019
    [4] Zhao X Y, Yang H C, Wang Y F, et al. Review on the electrochemical extraction of lithium from seawater/brine[J]. Journal of Electroanalytical Chemistry, 2019,850:113389. doi: 10.1016/j.jelechem.2019.113389
    [5] Guo Z Y, Ji Z Y, Chen Q B, et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes[J]. Journal of Cleaner Production 2018, 193: 338-350.
    [6] Chen S Q, Chen Z S, Wei Z W, et al. Titanium-based ionsieve with enhanced post-separation ability for high performance lithium recovery from geothermal water[J]. Chemical Engineering Journal, 2021,410:128320. doi: 10.1016/j.cej.2020.128320
    [7] Dou M, Fyta M. Lithium adsorption on 2D transition metal dichalcogenides: Towards a descriptor for machine learned materials design[J]. Journal of Materials Chemistry A, 2020,8:23511−23518. doi: 10.1039/D0TA04834H
    [8] Roobavannan S, Vigneswaran S, Naidu G. Enhancing the performance of membrane distillation and ion-exchange manganese oxide for recovery of waterand lithium from seawater[J]. Chemical Engineering Journal, 2020,396:125386. doi: 10.1016/j.cej.2020.125386
    [9] Li X W, Chen L L, Chao Y H, et al. Amorphous TiO2‐derived large‐capacity lithium ion sieve for lithium recovery[J]. Chemical Engineering & Technology, 2020,43(9):1784−1791.
    [10] Qiu Z W, Wang M Y, Chen Y, et al. Li4Mn5O12 doped cellulose acetate membrane with low Mn loss and high stability for enhancing lithium extraction from seawater[J]. Desalination, 2021,506:115003. doi: 10.1016/j.desal.2021.115003
    [11] Zhang Q H, Li S P, Sun S Y, et al. Lithium selective adsorption on 1-D MnO2 nanostructure ion-sieve[J]. Advanced Powder Technology, 2009,20(5):432−437. doi: 10.1016/j.apt.2009.02.008
    [12] Wang Q, Du X, Gao F F, et al. A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration[J]. Separation and Purification Technology, 2019,226:59−67. doi: 10.1016/j.seppur.2019.05.082
    [13] Liu D F, Sun S Y, Yu J G. Li4Mn5O12 desorption process with acetic acid and Mn dissolution mechanism[J]. Journal of Chemical Engineering of Japan, 2019,52(3):274−279.
    [14] Wei K, Zhou L H, Wang S, et al. Watermelon-like texture lithium titanate and silicon composite films as anodes for lithium-ion battery with high capacity and long cycle life[J]. Journal of Alloys and Compounds, 2021,885:160994. doi: 10.1016/j.jallcom.2021.160994
    [15] Tamura N, Yoshinuma M, Yin X, et al. A new multi-tracer pellet injection for a simultaneous study of low- and mid/high-Z impurities in high-temperature plasmas[J]. The Review of Scientific Instruments, 2021,92(6):063516. doi: 10.1063/5.0043495
    [16] Zhang J, Zhou C, Naenen V, et al. Facile synthesis of dual-phase lithium titanate nanowires as anode materials for lithium-ion battery[J]. Journal of Alloys and Compounds, 2021,875:160038. doi: 10.1016/j.jallcom.2021.160038
    [17] Yuan J S, Yin H B, Ji Z Y, et al. Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate[J]. Industrial & Engineering Chemistry Research, 2014,53(23):9889−9896.
    [18] Zhao Q, Gao J M, Guo Y, et al. Facile synthesis of magneticallyrecyclable Fe-doped lithium ion sieve and its Li adsorption performance[J]. Chemistry Letters, 2018,47(10):1308−1310. doi: 10.1246/cl.180593
    [19] Meng Xiangkun, He Shuai, Liu Yinfeng, et al. Solid-state synthesis of doped lithium-titanium ion-sieve and its absorption properties[J]. Journal of Qingdao University of Science and Technology, 2021,42(2):66−72. (孟祥坤, 贺帅, 刘银凤, 等. 固相法合成掺杂型锂钛系离子筛及其吸附性能[J]. 青岛科技大学学报(自然科学版), 2021,42(2):66−72.

    Meng Xiangkun, He Shuai, Liu Yinfeng, et al. Solid-state synthesis of doped lithium-titanium ion-sieve and its absorption properties[J]. Journal of Qingdao University of Science and Technology, 2021, 42(2): 66-72.
    [20] Onodera Y, Iwasaki T, Hayashi H, et al. A new inorganic titanium compound with high selective adsorbability for Li+[J]. Journal of the Ceramic Society of Japan, 1989,97:888−894.
    [21] Zhang L, Zhou D, Yao Q, et al. Preparation of H2TiO3-lithium adsorbent by the sol-gel process and its adsorption performance[J]. Applied Surface Science, 2016,368:82−87. doi: 10.1016/j.apsusc.2016.01.203
    [22] Liu Lijun. Progress in preparation of lithium ion sieve precursor[J]. Technology Innovation and Application, 2021,11(30):84−88. (刘鲤君. 锂离子筛前驱体制备方法研究进展[J]. 科技创新与应用, 2021,11(30):84−88.

    Liu Lijun. Progress in preparation of lithium ion sieve precursor[J]. Technology Innovation and Application, 2021, 11(30): 84-88.
    [23] Yu Chenglong, Song Jie, Ning Qingju, et al. Research progress of the new H2TiO3 lithium ions sievee[J]. Journal of Shaanxi University of Science & Technology, 2021,39(1):140−152. (于成龙, 宋杰, 宁青菊, 等. H2TiO3新型锂离子筛研究进展[J]. 陕西科技大学学报, 2021,39(1):140−152.

    Yu Chenglong, Song Jie, Ning Qingju, et al. Research progress of the new H2TiO3lithium ions sieve[J]. Journal of Shanxi University of Science & Technology, 2021, 39(1): 140-152.
    [24] Zhu Liangshi. Research progress of preparing nanometer copper oxide by template method[J]. Shandong Chemical Industry, 2020,49(18):81−83. (朱良师. 模板法制备纳米氧化铜的研究进展[J]. 山东化工, 2020,49(18):81−83. doi: 10.3969/j.issn.1008-021X.2020.18.032

    Zhu Liangshi. Research progress of preparing nanometer copper oxide by template method[J]. Shandong Chemical Industry, 2020, 49(18): 81-83. doi: 10.3969/j.issn.1008-021X.2020.18.032
    [25] Gu D L, Sun W J, Han G F, et al. Lithium ion sieve synthesized via an improved solid state method and adsorption performance for west Taijinar salt lake brine[J]. Chemical Engineering Journal, 2018,350:474−483. doi: 10.1016/j.cej.2018.05.191
    [26] Wang S L, Li P, Cui W W, et al. Hydrothermal synthesis of lithium-enriched beta-Li2TiO3 with an ion-sieve application: Excellent lithium adsorption[J]. RSC Advances, 2016,6(104):102608−102616. doi: 10.1039/C6RA18018C
    [27] Xu X, Zhou Y, Fan M H, et al. Lithium adsorption performance of a three-dimensional porous H2TiO3-type lithium ion-sieve in strong alkaline Bayer liquor[J]. RSC Advances, 2017,7(31):18883−18891. doi: 10.1039/C7RA01056G
    [28] Zhang LY, Liu W. A novel study on preparation of H2TiO3-lithium adsorbent with titanyl sulfate as titanium source by inorganic precipitation-peptization methord[J]. RSC Advances, 2018,8:1385−1391. doi: 10.1039/C7RA11430C
    [29] Modabberi S, Namayandeh A, Setti M, et al. Genesis of the eastern iranian bentonite deposits[J]. Applied Clay Science, 2019,168:56−67. doi: 10.1016/j.clay.2018.10.011
    [30] Liu Y L, Su Y P, Yin Y, et al. Research progress of bentonite modified cementitious materials[J]. Materials Reports, 2021,35(5):5040−5052.
    [31] Wang K X, Ma H, Pu S Y, et al. Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water[J]. Journal of Hazardous Materials, 2019,362:160. doi: 10.1016/j.jhazmat.2018.08.067
    [32] Hong Lei, Ding Qianyun, Sun Jianqiang, et al. Adsorption and removal of perfluorinated compounds in water by magnetic organic modified bentonite[J]. Journal of Lanzhou Jiaotong University, 2021,40(2):107−113. (洪雷, 丁倩云, 孙建强, 等. 磁化有机改性膨润土吸附水中全氟化合物的实验[J]. 兰州交通大学学报, 2021,40(2):107−113. doi: 10.3969/j.issn.1001-4373.2021.02.016

    Hong Lei, Ding Qianyun, Sun Jianqiang, et al. Adsorption and removal of perfluorinated compounds in water by magnetic organic modified bentonite[J]. Journal of Lanzhou Jiaotong University, 2021, 40(2): 107-113. doi: 10.3969/j.issn.1001-4373.2021.02.016
    [33] Yu C L, Yanagisawa K, Kamiya S, et al. Monoclinic Li2TiO3 nano-particles via hydrothermal reaction: Processing and structure[J]. Ceramics International, 2014,40(1):1901−1908. doi: 10.1016/j.ceramint.2013.07.097
    [34] Zhang L Y, Shui Y, Zhao L L, et al. Preparation of Ni-doped Li2TiO3 using an inorganic precipitation–peptization method[J]. Coatings, 2019,9(11):701−717. doi: 10.3390/coatings9110701
    [35] Sternik D, Galaburda M, Bogatyrov V M, et al. Influence of the synthesis method on the structural characteristics of novel hybrid adsorbents based on bentonite[J]. Colloids and Interfaces, 2019,3(1):18. doi: 10.3390/colloids3010018
    [36] Dai H J, Huang Y, Huang H H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogelsreinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue[J]. Carbohydrate Polymers, 2018,185:1−11. doi: 10.1016/j.carbpol.2017.12.073
    [37] Żymankowska-Kumona S, Holtzera M, Grabowski G. Thermal analysis of foundry bentonites[J]. Archives of Foundry Engineering, 2011,11:209−213.
    [38] Islam M M, Bredow T. Lithium diffusion pathways in β-Li2TiO3: A theoretical study[J]. Journal of Physical Chemistry C, 2016,120(13):7061−7066. doi: 10.1021/acs.jpcc.6b02613
    [39] Snyder M Q, Desisto W J, Tripp C P. An infrared study of the surface chemistry of lithium titanate spinel (Li4Ti5O12)[J]. Applied Surface Science, 2007,253(24):9336−9341. doi: 10.1016/j.apsusc.2007.05.065
    [40] Marthi R, Asgar H, Gadikota G, et al. On the structure and lithium adsorption mechanism of layered H2TiO3[J]. ACS Applied Materials & Interfaces, 2021,13(7):8361−8369.
    [41] Laumann A, Fehr K T, Wachsmann M, et al. Metastable formation of low temperature cubic Li2TiO3 under hydrothermal conditions—Its stability and structural properties[J]. Solid State Ionics, 2010,181(33-34):1525−1529. doi: 10.1016/j.ssi.2010.08.017
    [42] Huang Z H, Li Y Z, Chen W J, et al. Modified bentonite adsorption of organic pollutants of dyewastewater[J]. Materials Chemistry and Physics, 2017,202:266−276. doi: 10.1016/j.matchemphys.2017.09.028
  • 加载中
图(7)
计量
  • 文章访问数:  313
  • HTML全文浏览量:  93
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回