留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膨润土改性制备多孔结构钛锂离子筛前驱体

黄成华 李燕 张菁菁 税亿 吴娜 张理元

黄成华, 李燕, 张菁菁, 税亿, 吴娜, 张理元. 膨润土改性制备多孔结构钛锂离子筛前驱体[J]. 钢铁钒钛, 2022, 43(3): 1-8. doi: 10.7513/j.issn.1004-7638.2022.03.001
引用本文: 黄成华, 李燕, 张菁菁, 税亿, 吴娜, 张理元. 膨润土改性制备多孔结构钛锂离子筛前驱体[J]. 钢铁钒钛, 2022, 43(3): 1-8. doi: 10.7513/j.issn.1004-7638.2022.03.001
Huang Chenghua, Li Yan, Zhang Jingjing, Shui Yi, Wu Na, Zhang Liyuan. Synthesis of porous bentonite modified titanium-lithium ion sieve precursor[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 1-8. doi: 10.7513/j.issn.1004-7638.2022.03.001
Citation: Huang Chenghua, Li Yan, Zhang Jingjing, Shui Yi, Wu Na, Zhang Liyuan. Synthesis of porous bentonite modified titanium-lithium ion sieve precursor[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 1-8. doi: 10.7513/j.issn.1004-7638.2022.03.001

膨润土改性制备多孔结构钛锂离子筛前驱体

doi: 10.7513/j.issn.1004-7638.2022.03.001
基金项目: 四川省科技计划项目 (项目号2019YJ0383)。
详细信息
    作者简介:

    黄成华 (1963—),女,四川资中人,本科,副教授,主要从事离子交换吸附材料研究,E-mail:758361920@qq.com

    通讯作者:

    张理元,博士,副教授,E-mail:zhangliyuansir@126.com

  • 中图分类号: TF823,TQ424

Synthesis of porous bentonite modified titanium-lithium ion sieve precursor

  • 摘要: 以Ti(SO4)2为钛源,CH3COOLi·2H2O为锂源,NH3·H2O为沉淀剂,H2O2为络合剂,采用沉淀胶溶法制备了钛酸锂前驱体溶胶,添加膨润土,经搅拌、陈化、干燥、煅烧后得到膨润土改性Li2TiO3粉体。研究了络合剂H2O2与Ti的摩尔比(R)、煅烧温度、膨润土与溶胶的固液比对Li2TiO3的表面形貌及晶体结构的影响。采用扫描电镜、X射线衍射、热重-差示扫描量热、红外光谱对样品进行表征。结果表明,当R=6时,未改性的Li2TiO3在750 ℃煅烧下,晶体结构最完整。按1.67 g/L的固液比添加膨润土对样品进行改性后,煅烧温度为750 ℃时各晶面结晶最完整,得到表面呈均匀多孔结构的Li2TiO3
  • 图  1  H2O2与Ti的摩尔比(R)不同时的Li2TiO3的SEM形貌

    Figure  1.  SEM images of Li2TiO3 with different molar ratios of H2O2 to Ti

    (a) R=3;(b) R=4;(c) R=5;(d) R=6;(e) R=7;(f) R=9

    图  2  H2O2与Ti的摩尔比不同时的Li2TiO3的XRD谱

    Figure  2.  XRD patterns of Li2TiO3 with different molar ratios of H2O2 to Ti

    (a) R=3;(b) R=4;(c) R=5;(d) R=6;(e) R=7;(f) R=9

    图  3  膨润土-Li2TiO3在不同煅烧温度下的XRD谱(固液比为1.667 g/L,R=6)

    Figure  3.  XRD patterns of bentonite-Li2TiO3 calcined at different temperatures with a solid-to-liquid ratio of 1.667 g/L and R value of 6

    (a) 600 ℃;(b) 650 ℃;(c) 700 ℃; (d) 750 ℃;(e) 800 ℃;(f) 900 ℃

    图  4  膨润土-Li2TiO3热重-差示扫描量热曲线

    Figure  4.  TG-DSC curve of bentonite-Li2TiO3

    图  5  按不同固液比添加膨润土改性处理的Li2TiO3的XRD谱(R=6)

    Figure  5.  XRD patterns of Li2TiO3 modified by adding bentonite at different solid-to-liquid ratios with R value of 6 value of 6

    (a) 0.333 g/L;(b) 1 g/L;(c) 1.667 g/L;(d) 2.5 g/L;(e) 3.333 g/L

    图  6  按不同固液比添加膨润土改性处理的Li2TiO3的SEM形貌(R=6)

    (a) 煅烧后膨润土;(b) 0.333 g/L;(c) 1 g/L;(d) 1.667 g/L;(e) 2.5 g/L;(f) 3.333 g/L

    Figure  6.  SEM images of Li2TiO3 modified by adding bentonite at different solid-liquid ratios with R value of 6

    图  7  Li2TiO3和膨润土-Li2TiO3(1.667 g/ L)的FTIR谱

    (a) Li2TiO3 ; (b) 膨润土-Li2TiO3

    Figure  7.  FTIR spectra of Li2TiO3 and bentonite-Li2TiO3

  • [1] Martin G, Rentsch L, Hoeck M, et al. Lithium market research–global supply, future demand and price development[J]. Energy Storage Materials, 2017,6:171−179. doi: 10.1016/j.ensm.2016.11.004
    [2] Swain B. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017,172:388−403. doi: 10.1016/j.seppur.2016.08.031
    [3] Zhang Y, Hu Y H, Sun N, et al. A novel precipitant for separating lithium from magnesium in high Mg/Li ratio brine[J]. Hydrometallurgy, 2019,187:125−133. doi: 10.1016/j.hydromet.2019.05.019
    [4] Zhao X Y, Yang H C, Wang Y F, et al. Review on the electrochemical extraction of lithium from seawater/brine[J]. Journal of Electroanalytical Chemistry, 2019,850:113389. doi: 10.1016/j.jelechem.2019.113389
    [5] Guo Z Y, Ji Z Y, Chen Q B, et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes[J]. Journal of Cleaner Production 2018, 193: 338-350.
    [6] Chen S Q, Chen Z S, Wei Z W, et al. Titanium-based ionsieve with enhanced post-separation ability for high performance lithium recovery from geothermal water[J]. Chemical Engineering Journal, 2021,410:128320. doi: 10.1016/j.cej.2020.128320
    [7] Dou M, Fyta M. Lithium adsorption on 2D transition metal dichalcogenides: Towards a descriptor for machine learned materials design[J]. Journal of Materials Chemistry A, 2020,8:23511−23518. doi: 10.1039/D0TA04834H
    [8] Roobavannan S, Vigneswaran S, Naidu G. Enhancing the performance of membrane distillation and ion-exchange manganese oxide for recovery of waterand lithium from seawater[J]. Chemical Engineering Journal, 2020,396:125386. doi: 10.1016/j.cej.2020.125386
    [9] Li X W, Chen L L, Chao Y H, et al. Amorphous TiO2‐derived large‐capacity lithium ion sieve for lithium recovery[J]. Chemical Engineering & Technology, 2020,43(9):1784−1791.
    [10] Qiu Z W, Wang M Y, Chen Y, et al. Li4Mn5O12 doped cellulose acetate membrane with low Mn loss and high stability for enhancing lithium extraction from seawater[J]. Desalination, 2021,506:115003. doi: 10.1016/j.desal.2021.115003
    [11] Zhang Q H, Li S P, Sun S Y, et al. Lithium selective adsorption on 1-D MnO2 nanostructure ion-sieve[J]. Advanced Powder Technology, 2009,20(5):432−437. doi: 10.1016/j.apt.2009.02.008
    [12] Wang Q, Du X, Gao F F, et al. A novel H1.6Mn1.6O4/reduced graphene oxide composite film for selective electrochemical capturing lithium ions with low concentration[J]. Separation and Purification Technology, 2019,226:59−67. doi: 10.1016/j.seppur.2019.05.082
    [13] Liu D F, Sun S Y, Yu J G. Li4Mn5O12 desorption process with acetic acid and Mn dissolution mechanism[J]. Journal of Chemical Engineering of Japan, 2019,52(3):274−279.
    [14] Wei K, Zhou L H, Wang S, et al. Watermelon-like texture lithium titanate and silicon composite films as anodes for lithium-ion battery with high capacity and long cycle life[J]. Journal of Alloys and Compounds, 2021,885:160994. doi: 10.1016/j.jallcom.2021.160994
    [15] Tamura N, Yoshinuma M, Yin X, et al. A new multi-tracer pellet injection for a simultaneous study of low- and mid/high-Z impurities in high-temperature plasmas[J]. The Review of Scientific Instruments, 2021,92(6):063516. doi: 10.1063/5.0043495
    [16] Zhang J, Zhou C, Naenen V, et al. Facile synthesis of dual-phase lithium titanate nanowires as anode materials for lithium-ion battery[J]. Journal of Alloys and Compounds, 2021,875:160038. doi: 10.1016/j.jallcom.2021.160038
    [17] Yuan J S, Yin H B, Ji Z Y, et al. Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate[J]. Industrial & Engineering Chemistry Research, 2014,53(23):9889−9896.
    [18] Zhao Q, Gao J M, Guo Y, et al. Facile synthesis of magneticallyrecyclable Fe-doped lithium ion sieve and its Li adsorption performance[J]. Chemistry Letters, 2018,47(10):1308−1310. doi: 10.1246/cl.180593
    [19] Meng Xiangkun, He Shuai, Liu Yinfeng, et al. Solid-state synthesis of doped lithium-titanium ion-sieve and its absorption properties[J]. Journal of Qingdao University of Science and Technology, 2021,42(2):66−72. (孟祥坤, 贺帅, 刘银凤, 等. 固相法合成掺杂型锂钛系离子筛及其吸附性能[J]. 青岛科技大学学报(自然科学版), 2021,42(2):66−72.

    Meng Xiangkun, He Shuai, Liu Yinfeng, et al. Solid-state synthesis of doped lithium-titanium ion-sieve and its absorption properties[J]. Journal of Qingdao University of Science and Technology, 2021, 42(2): 66-72.
    [20] Onodera Y, Iwasaki T, Hayashi H, et al. A new inorganic titanium compound with high selective adsorbability for Li+[J]. Journal of the Ceramic Society of Japan, 1989,97:888−894.
    [21] Zhang L, Zhou D, Yao Q, et al. Preparation of H2TiO3-lithium adsorbent by the sol-gel process and its adsorption performance[J]. Applied Surface Science, 2016,368:82−87. doi: 10.1016/j.apsusc.2016.01.203
    [22] Liu Lijun. Progress in preparation of lithium ion sieve precursor[J]. Technology Innovation and Application, 2021,11(30):84−88. (刘鲤君. 锂离子筛前驱体制备方法研究进展[J]. 科技创新与应用, 2021,11(30):84−88.

    Liu Lijun. Progress in preparation of lithium ion sieve precursor[J]. Technology Innovation and Application, 2021, 11(30): 84-88.
    [23] Yu Chenglong, Song Jie, Ning Qingju, et al. Research progress of the new H2TiO3 lithium ions sievee[J]. Journal of Shaanxi University of Science & Technology, 2021,39(1):140−152. (于成龙, 宋杰, 宁青菊, 等. H2TiO3新型锂离子筛研究进展[J]. 陕西科技大学学报, 2021,39(1):140−152.

    Yu Chenglong, Song Jie, Ning Qingju, et al. Research progress of the new H2TiO3lithium ions sieve[J]. Journal of Shanxi University of Science & Technology, 2021, 39(1): 140-152.
    [24] Zhu Liangshi. Research progress of preparing nanometer copper oxide by template method[J]. Shandong Chemical Industry, 2020,49(18):81−83. (朱良师. 模板法制备纳米氧化铜的研究进展[J]. 山东化工, 2020,49(18):81−83. doi: 10.3969/j.issn.1008-021X.2020.18.032

    Zhu Liangshi. Research progress of preparing nanometer copper oxide by template method[J]. Shandong Chemical Industry, 2020, 49(18): 81-83. doi: 10.3969/j.issn.1008-021X.2020.18.032
    [25] Gu D L, Sun W J, Han G F, et al. Lithium ion sieve synthesized via an improved solid state method and adsorption performance for west Taijinar salt lake brine[J]. Chemical Engineering Journal, 2018,350:474−483. doi: 10.1016/j.cej.2018.05.191
    [26] Wang S L, Li P, Cui W W, et al. Hydrothermal synthesis of lithium-enriched beta-Li2TiO3 with an ion-sieve application: Excellent lithium adsorption[J]. RSC Advances, 2016,6(104):102608−102616. doi: 10.1039/C6RA18018C
    [27] Xu X, Zhou Y, Fan M H, et al. Lithium adsorption performance of a three-dimensional porous H2TiO3-type lithium ion-sieve in strong alkaline Bayer liquor[J]. RSC Advances, 2017,7(31):18883−18891. doi: 10.1039/C7RA01056G
    [28] Zhang LY, Liu W. A novel study on preparation of H2TiO3-lithium adsorbent with titanyl sulfate as titanium source by inorganic precipitation-peptization methord[J]. RSC Advances, 2018,8:1385−1391. doi: 10.1039/C7RA11430C
    [29] Modabberi S, Namayandeh A, Setti M, et al. Genesis of the eastern iranian bentonite deposits[J]. Applied Clay Science, 2019,168:56−67. doi: 10.1016/j.clay.2018.10.011
    [30] Liu Y L, Su Y P, Yin Y, et al. Research progress of bentonite modified cementitious materials[J]. Materials Reports, 2021,35(5):5040−5052.
    [31] Wang K X, Ma H, Pu S Y, et al. Hybrid porous magnetic bentonite-chitosan beads for selective removal of radioactive cesium in water[J]. Journal of Hazardous Materials, 2019,362:160. doi: 10.1016/j.jhazmat.2018.08.067
    [32] Hong Lei, Ding Qianyun, Sun Jianqiang, et al. Adsorption and removal of perfluorinated compounds in water by magnetic organic modified bentonite[J]. Journal of Lanzhou Jiaotong University, 2021,40(2):107−113. (洪雷, 丁倩云, 孙建强, 等. 磁化有机改性膨润土吸附水中全氟化合物的实验[J]. 兰州交通大学学报, 2021,40(2):107−113. doi: 10.3969/j.issn.1001-4373.2021.02.016

    Hong Lei, Ding Qianyun, Sun Jianqiang, et al. Adsorption and removal of perfluorinated compounds in water by magnetic organic modified bentonite[J]. Journal of Lanzhou Jiaotong University, 2021, 40(2): 107-113. doi: 10.3969/j.issn.1001-4373.2021.02.016
    [33] Yu C L, Yanagisawa K, Kamiya S, et al. Monoclinic Li2TiO3 nano-particles via hydrothermal reaction: Processing and structure[J]. Ceramics International, 2014,40(1):1901−1908. doi: 10.1016/j.ceramint.2013.07.097
    [34] Zhang L Y, Shui Y, Zhao L L, et al. Preparation of Ni-doped Li2TiO3 using an inorganic precipitation–peptization method[J]. Coatings, 2019,9(11):701−717. doi: 10.3390/coatings9110701
    [35] Sternik D, Galaburda M, Bogatyrov V M, et al. Influence of the synthesis method on the structural characteristics of novel hybrid adsorbents based on bentonite[J]. Colloids and Interfaces, 2019,3(1):18. doi: 10.3390/colloids3010018
    [36] Dai H J, Huang Y, Huang H H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogelsreinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue[J]. Carbohydrate Polymers, 2018,185:1−11. doi: 10.1016/j.carbpol.2017.12.073
    [37] Żymankowska-Kumona S, Holtzera M, Grabowski G. Thermal analysis of foundry bentonites[J]. Archives of Foundry Engineering, 2011,11:209−213.
    [38] Islam M M, Bredow T. Lithium diffusion pathways in β-Li2TiO3: A theoretical study[J]. Journal of Physical Chemistry C, 2016,120(13):7061−7066. doi: 10.1021/acs.jpcc.6b02613
    [39] Snyder M Q, Desisto W J, Tripp C P. An infrared study of the surface chemistry of lithium titanate spinel (Li4Ti5O12)[J]. Applied Surface Science, 2007,253(24):9336−9341. doi: 10.1016/j.apsusc.2007.05.065
    [40] Marthi R, Asgar H, Gadikota G, et al. On the structure and lithium adsorption mechanism of layered H2TiO3[J]. ACS Applied Materials & Interfaces, 2021,13(7):8361−8369.
    [41] Laumann A, Fehr K T, Wachsmann M, et al. Metastable formation of low temperature cubic Li2TiO3 under hydrothermal conditions—Its stability and structural properties[J]. Solid State Ionics, 2010,181(33-34):1525−1529. doi: 10.1016/j.ssi.2010.08.017
    [42] Huang Z H, Li Y Z, Chen W J, et al. Modified bentonite adsorption of organic pollutants of dyewastewater[J]. Materials Chemistry and Physics, 2017,202:266−276. doi: 10.1016/j.matchemphys.2017.09.028
  • 加载中
图(7)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  19
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回