留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废脱硝催化剂加盐焙烧-酸浸提钛的浸出动力学研究

王路平 梅光军 吴敏 袁勤智 于明明

王路平, 梅光军, 吴敏, 袁勤智, 于明明. 废脱硝催化剂加盐焙烧-酸浸提钛的浸出动力学研究[J]. 钢铁钒钛, 2022, 43(3): 9-13. doi: 10.7513/j.issn.1004-7638.2022.03.002
引用本文: 王路平, 梅光军, 吴敏, 袁勤智, 于明明. 废脱硝催化剂加盐焙烧-酸浸提钛的浸出动力学研究[J]. 钢铁钒钛, 2022, 43(3): 9-13. doi: 10.7513/j.issn.1004-7638.2022.03.002
Wang Luping, Mei Guangjun, Wu Min, Yuan Qinzhi, Yu Mingming. Study on leaching kinetics of titanium from waste denitrification catalyst with salt roasting-acid leaching[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 9-13. doi: 10.7513/j.issn.1004-7638.2022.03.002
Citation: Wang Luping, Mei Guangjun, Wu Min, Yuan Qinzhi, Yu Mingming. Study on leaching kinetics of titanium from waste denitrification catalyst with salt roasting-acid leaching[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 9-13. doi: 10.7513/j.issn.1004-7638.2022.03.002

废脱硝催化剂加盐焙烧-酸浸提钛的浸出动力学研究

doi: 10.7513/j.issn.1004-7638.2022.03.002
基金项目: 国家自然科学基金项目(编号:51904121)。
详细信息
    作者简介:

    王路平(1996—),男,江西抚州人,硕士研究生,主要从事废脱硝催化剂回收方面研究,E-mail:942505496@qq.com

    通讯作者:

    梅光军(1969—),男,湖南常德人,教授,博士生导师,主要从事矿物加工工程方面的研究,E-mail:mgj8343@sina.com

  • 中图分类号: TF823,X756

Study on leaching kinetics of titanium from waste denitrification catalyst with salt roasting-acid leaching

  • 摘要: 采用加盐焙烧-酸浸法回收废脱硝催化剂中的钛,利用液-固多相反应的核收缩模型研究硫酸浸钛的浸出动力学,考察了硫酸浓度和酸浸温度对钛浸出反应速率的影响。结果表明,在温度低于60 ℃或硫酸质量分数小于45%时,浸出受化学反应和固膜扩散混合控制;升温和提高硫酸浓度浸出过程则转变为化学反应控制。低温受混合控制时的表观活化能为30.23 kJ/mol,升温后受化学反应控制时的表观活化能为92.92 kJ/mol,表观反应级数为4.932。提高反应温度和硫酸浓度均能加快钛的浸出速率,提高钛的浸出率。
  • 图  1  硫酸浓度对钛浸出率的影响

    Figure  1.  Influence of sulfuric acid concentration on leaching rate of titanium

    图  2  浸出温度对钛浸出率的影响

    Figure  2.  Effect of leaching temperature on leaching rate of titanium

    图  3  不同硫酸浓度浸出率与时间的关系

    Figure  3.  Relationship between leaching rate and time at different sulfuric acid concentrations

    图  4  不同温度浸出率与时间的关系

    Figure  4.  Relationship between leaching rate and time at different temperatures

    图  5  lnk与lnC的关系

    Figure  5.  Relationship between lnk and lnC

    表  1  废催化剂主要氧化物成分

    Table  1.   Main oxide composition of spent catalyst %

    V2O5TiO2Al2O3SiO2Na2OCaO
    1.1492.75245.38245.7410.1410.165
    下载: 导出CSV
  • [1] Wang Xiuwen, Li Lulu, Sun Jingfang, et al. Analysis of NOx emission and control in China and research progress in denitration catalysts.[J]. Industrial Catalysis, 2019,27(2):1−23. (王修文, 李露露, 孙敬方, 等. 我国氮氧化物排放控制及脱硝催化剂研究进展[J]. 工业催化, 2019,27(2):1−23. doi: 10.3969/j.issn.1008-1143.2019.02.001

    Wang Xiuwen, Li Lulu, Sun Jingfang, et al. Research progress of nox emissioncontrol and denitrification catalysts inChina[J]. Industrial Catalysis, 2019, 27(2): 1-23 doi: 10.3969/j.issn.1008-1143.2019.02.001
    [2] Wang Qiubao, Liu Zhiyuan. Influence of thermal power plant on atmosphere and its prevention[J]. Electronic Test, 2016,(23):163−165. (王秋堡, 刘知远. 火力发电厂对大气的影响与防治[J]. 电子测试, 2016,(23):163−165. doi: 10.3969/j.issn.1000-8519.2016.23.097

    Wang Qiubao, Liu Zhiyuan. Influence of thermal power plant on atmosphere and its prevention[J]. Electronic Test, 2016(23): 163-165. doi: 10.3969/j.issn.1000-8519.2016.23.097
    [3] Wang Chunlan, Song Hao, Han Dongqin. Development and application of SCR catalyst regeneration technology for denitrification[J]. China's Environmental Protection Industry, 2014,(4):22−25. (王春兰, 宋浩, 韩东琴. SCR脱硝催化剂再生技术的发展及应用[J]. 中国环保产业, 2014,(4):22−25. doi: 10.3969/j.issn.1006-5377.2014.04.006

    Wang Chunlan, Song Hao, Han Dongqin. Development and application of SCR catalyst regeneration technology for denitrification[J]. China's Environmental Protection Industry, 2014(4): 22-25. doi: 10.3969/j.issn.1006-5377.2014.04.006
    [4] Huang Jiehui, Wu Junfeng, Ren Xiaoming, et al. Recycling and environmental management of spent SCR denitrification catalyst[J]. Environmental Science and Technology, 2015,28(6):74−77. (黄洁慧, 吴俊锋, 任晓鸣, 等. 废SCR脱硝催化剂的再生回收及环境管理[J]. 环境科技, 2015,28(6):74−77. doi: 10.3969/j.issn.1674-4829.2015.06.017

    Huang Jiehui, Wu Junfeng, Ren Xiaoming, et al. Recycling and environmental management of spent SCR denitrification catalyst[J]. Environmental Science and Technology, 2015, 28(6): 74-77. doi: 10.3969/j.issn.1674-4829.2015.06.017
    [5] Guo Lixin, Lu Yihai, Han Zhongge. Discussion on deactivation mechanism and regeneration technology of SCR denitrification catalyst in thermal power plant[J]. Resource Conservation and Environmental Protection, 2016,(8):19−20. (郭力欣, 陆义海, 韩忠阁. 火电厂SCR脱硝催化剂失活机理与再生技术探讨[J]. 资源节约与环保, 2016,(8):19−20. doi: 10.3969/j.issn.1673-2251.2016.08.022

    Guo Lixin, Lu Yihai, Han Zhongge. Discussion on deactivation mechanism and regeneration technology of SCR denitrification catalyst in thermal power plant[J]. Resource Conservation and Environmental Protection, 2016(8): 19-20. doi: 10.3969/j.issn.1673-2251.2016.08.022
    [6] Cao Limei, Wang Qing, Zhang Wei, et al. Analysis and environmental management of SCR catalyst for typical coal-fired power plant waste[J]. Equipment Environmental Engineering, 2018,15(2):45−51. (曹礼梅, 王青, 张巍, 等. 典型燃煤电厂废SCR催化剂解析及环境管理思考[J]. 装备环境工程, 2018,15(2):45−51.

    Cao Limei, Wang Qing, Zhang Wei, et al. Analysis and environmental management of SCR catalyst for typical coal-fired power plant waste[J]. Equipment EnvironmentalEngineering, 2018, 15(2): 45-51.
    [7] Zhang Tao, Chen Xiaoli, Sun Chao, et al. Research progress on valuable metal recovery and reuse of waste vanadium titanium SCR catalyst[J]. Modern Chemical Industry, 2021,41(S1):67−72,77. (张涛, 陈晓利, 孙超, 等. 废钒钛系SCR催化剂有价金属回收与再利用研究进展[J]. 现代化工, 2021,41(S1):67−72,77.

    Zhang Tao, Chen Xiaoli, Sun Chao, et al. Research progress on valuable metal recovery and reuse of waste vanadium titanium SCR catalyst[J]. Modern Chemical Industry, 2021, 41(S1): 67-72, 77.
    [8] Gao Zhaowei, Cao Chengchao, Li Yaoshan, et al. Research on acid leaching kinetics of high calcium low grade copper ore[J]. Mining and Metallurgical Engineering, 2021,41(6):170−173. (高昭伟, 曹成超, 李耀山, 等. 高钙型低品位铜矿酸性浸出动力学研究[J]. 矿冶工程, 2021,41(6):170−173. doi: 10.3969/j.issn.0253-6099.2021.06.041

    Gao Zhaowei, Cao Chengchao, Li Yaoshan, et al. Research on acid leaching kinetics of high calcium low grade copper ore[J]. Mining and Metallurgical Engineering, 2021, 41(6): 170-173. doi: 10.3969/j.issn.0253-6099.2021.06.041
    [9] Yang Lijiao, Chen Nanchun, Zhong Xiaping, et al. Kinetic analysis of lead leaching from lead slag in nacl-hcl system[J]. The Chinese Journal of Nonferrous Metals, 2015,25(6):1705−1712. (杨利姣, 陈南春, 钟夏平, 等. NaCl-HCl体系浸出铅渣中铅的动力学分析[J]. 中国有色金属学报, 2015,25(6):1705−1712.

    Yang Lijiao, Chen Nanchun, Zhong Xiaping, et al. Kinetic analysis of lead leaching from lead slag in nacl-hcl system[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(6): 1705-1712.
    [10] Jiang Yan, Sun Lida, Li Zijing, et al. Study on leaching kinetics of zinc from blast furnace dust[J]. Inorganic Chemicals Industry, 2015,47(1):53−55. (姜艳, 孙丽达, 李自静, 等. 高炉烟尘中锌的浸出动力学研究[J]. 无机盐工业, 2015,47(1):53−55.

    Jiang Yan, Sun Lida, Li Zijing, et al. Study on leaching kinetics of zinc from blast furnace dust[J]. Inorganic Chemicals Industry, 2015, 47(1): 53-55.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  10
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回