留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脱硝催化剂载体二氧化钛的制备与表征

李化全 邱贵宝 吕学伟

李化全, 邱贵宝, 吕学伟. 脱硝催化剂载体二氧化钛的制备与表征[J]. 钢铁钒钛, 2022, 43(3): 26-32. doi: 10.7513/j.issn.1004-7638.2022.03.005
引用本文: 李化全, 邱贵宝, 吕学伟. 脱硝催化剂载体二氧化钛的制备与表征[J]. 钢铁钒钛, 2022, 43(3): 26-32. doi: 10.7513/j.issn.1004-7638.2022.03.005
Li Huaquan, Qiu Guibao, Lv Xuewei. Preparation and characterization of titanium dioxide as catalyst support for denitration[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 26-32. doi: 10.7513/j.issn.1004-7638.2022.03.005
Citation: Li Huaquan, Qiu Guibao, Lv Xuewei. Preparation and characterization of titanium dioxide as catalyst support for denitration[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 26-32. doi: 10.7513/j.issn.1004-7638.2022.03.005

脱硝催化剂载体二氧化钛的制备与表征

doi: 10.7513/j.issn.1004-7638.2022.03.005
详细信息
    作者简介:

    李化全(1977-),男,山东淄博人,在读博士研究生,长期从事钛、钴及其盐类化合物、三元正极材料的制备与表征的产业化研究工作,E-mail: lihuaquan1229@163.com

    通讯作者:

    邱贵宝,博士,教授,主要从事高炉渣高温物理化学、多孔钛合金制备与表征,E-mail: qiuguibao@cqu.edu.cn

  • 中图分类号: TF823,TQ426

Preparation and characterization of titanium dioxide as catalyst support for denitration

  • 摘要: 以硫酸法钛白粉生产的偏钛酸为原料,经过氨水中和,活性元素复合、煅烧、粉碎等工艺过程,制备了脱硝催化剂载体二氧化钛。利用粒度分布、XRD、SEM等测试手段对粉体的晶型结构、形貌等进行表征。结果表明制备的脱硝催化剂载体二氧化钛为锐钛型,粒度分布均匀,颗粒形貌较好;随着煅烧温度的升高,制备的脱硝催化剂载体二氧化钛SA90、SA100、SA200的衍射峰的强度都远低于纯锐钛型钛白粉样品BA01-01的衍射峰,结晶尺寸在100~200 nm,活性较好。
  • 图  1  脱硝催化剂载体二氧化钛与锐钛型钛白粉的XRD谱

    Figure  1.  XRD image of denitration catalyst support TiO2 and anatase type TiO2

    图  2  脱硝催化剂载体二氧化钛与锐钛型钛白粉的衍射峰强度

    Figure  2.  XRD patterns of denitration catalyst support TiO2 and anatase TiO2

    图  3  脱硝催化剂载体二氧化钛与锐钛型钛白粉的SEM形貌

    Figure  3.  SEM images of denitration catalyst support TiO2 and anatase TiO2

    图  4  脱硝催化剂载体二氧化钛与锐钛型钛白粉的TEM形貌

    Figure  4.  TEM images of denitration catalyst support TiO2 and anatase TiO2

    图  5  脱硝催化剂载体二氧化钛与锐钛型钛白粉的粒径分布

    Figure  5.  Particle size distribution of denitration catalyst support TiO2 and anatase TiO2

    表  1  制备脱硝催化剂载体二氧化钛与标准锐钛型钛白粉和金红石型钛白粉的晶粒尺寸

    Table  1.   Grain size of denitration catalyst support TiO2 and standard anatase TiO2 and rutile nm

    SA90SA100SA200BA01-01
    金红石型
    107171150494521
    下载: 导出CSV

    表  2  脱硝催化剂载体二氧化钛与锐钛型钛白粉的BET与粒度分布

    Table  2.   BET and particle size distribution of denitration catalyst support TiO2 and anatase TiO2

    样品BET/(m2·g−1)D10/μmD50/μmD90/μm
    SA90107.000.4611.0492.087
    SA100107.920.3830.932.360
    SA200108.460.3590.8224.218
    BA01-019.250.3510.7501.719
    下载: 导出CSV

    表  3  本研究制备的脱硝催化剂载体二氧化钛与国外产品的理化性能比较

    Table  3.   Physical and chemical properties comparison between the as-prepared denitration catalyst support TiO2 and some foreign products

    样品水分/%游离(SO42−)/%总(SO42−)/%TiO2/%R/%晶粒度/nm
    SA904.13.515.1391.30.1112.1
    MC-94.03.555.2091.00.2013.0
    SA1001.173.034.4592.60.2211.2
    MC-9-L1.353.004.5092.00.3012.0
    SA2000.42.793.5295.30.269.2
    MC-50.52.803.5095.50.3011.0
    下载: 导出CSV
  • [1] Zhu Xiaodong, Song Huijin, Wang Mingkun, et al. Preparation and characterization of anatase Nd-doped TiO2 with high thermal stability[J]. Jouranal of Synthetic Crystals, 2016,45(8):2147−2151. (朱晓东, 宋慧瑾, 王明坤, 等. 高热稳定性锐钛矿型Nb掺杂纳米TiO2的制备与表征[J]. 人工晶体学报, 2016,45(8):2147−2151. doi: 10.3969/j.issn.1000-985X.2016.08.029

    Zhu Xiaodong, Song Huijin, Wang Mingkun, et al. Preparation and characterization of anatase Nd-doped TiO2 with high thermal stability[J]. Jouranal of Synthetic Crystals, 2016, 45(8): 2147-2151. doi: 10.3969/j.issn.1000-985X.2016.08.029
    [2] Buxbaum G, Pfaff G. Industrial inorganic pigments[M]. WILEY-VCH Verlag GmbH& Co. KGaA, Weinheim, 2005.
    [3] Jalava J P. The use of an exact light-scattering theory for spheroidal TiO2 pigment partricles[J]. Part & Particle Systems Characterization, 2006,23(2):159−164.
    [4] Wang Y, Li J, Wang L, et al. Preparation of rutiletitanium dioxide white pigment via doping and calcination of metatitanate acid obtained by the NaOH molten salt method[J]. Industrial & Engineering Chemistry Research, 2010,49(16):7693−7696.
    [5] Ansari Sajid Ali, Khan Mohammad Mansoob, Ansari Mohd Omaish, et al. Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite[J]. Solar Energy Materials and Solar Cells, 2015,141:162−170. doi: 10.1016/j.solmat.2015.05.029
    [6] Ganesan Srividhya, Muruganandham Abinaya, Mounasamy Veena, et al. Highly selective dimethylamine sensing performance of TiO2 thin films at room temperature[J]. Journal of Nanoscience and Naotechnology, 2020,20(5):3131−3139. doi: 10.1166/jnn.2020.17199
    [7] Cao Lingyun, Fei Xuening, Zhao Hongbin, et al. Preparation of phthalocyanine blue/rutile TiO2 composite pigment with a ball milling method and study on its NIR reflectivity[J]. Dye and Pigments, 2020,173:107898. doi: 10.1016/j.dyepig.2019.107898
    [8] Li Dandan, Yao Guangzhen, Liang Guiyan, et al. Preparation of Go/TiO2 composite photocatalyst and treatment of synthetic dye wastewater[J]. Journal of Materials Engineering, 2019,47(12):104−110. (李丹丹, 姚广铮, 梁桂琰, 等. 氧化石墨烯复合二氧化钛光催化剂的制备及模拟染料废水处理[J]. 材料工程, 2019,47(12):104−110. doi: 10.11868/j.issn.1001-4381.2018.000701

    Li Dandan, Yao Guangzhen, Liang Guiyan, et al. Preparation of Go/TiO2 composite photocatalyst and treatment of synthetic dye wastewater[J]. Journal of Materials Engineering, 2019, 47(12): 104-110. doi: 10.11868/j.issn.1001-4381.2018.000701
    [9] Chong Mengnan, Jin Bo, Chow Christopher W K. Recent developments in photocatalytic water treatment technology: A review[J]. Water Research, 2010,44(10):2997−3027. doi: 10.1016/j.watres.2010.02.039
    [10] Wang Lina, Li Zhigang. The present situation and mechanisms of NOx removal technology from flue gas[J]. Shandong Electric Power, 2010,174(3):62−65. (王丽娜, 李治钢. 烟气脱氮技术机理及研究现状[J]. 山东电力技术, 2010,174(3):62−65.

    Wang Lina, Li Zhigang. The present situation and mechanisms of NOx removal technology from flue gas[J]. Shandong Electric Power, 2010, 174(3): 62-65.
    [11] Hu Y H, Griffiths K, Norton P R. Surface science studies of selective catalytic reduction of NO: Progress in the last ten years[J]. Surface Science, 2009,603(10-12):1740−1750. doi: 10.1016/j.susc.2008.09.051
    [12] Lisi L, Lasorella G, Malloggi S, et al. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts[J]. Applied Catalysis B:Environmental, 2004,50(4):251−258. doi: 10.1016/j.apcatb.2004.01.007
    [13] Gu Min, Yang Jia, Du Yungui. Effect of titanium dioxide support on the properties for selective catalytic reduction de-NOx catalyst[J]. Guangzhou Chemistry, 2012,37(4):49−54. (辜敏, 杨佳, 杜云贵. 钛白粉载体对选择催化还原脱硝催化剂性能的影响[J]. 广州化学, 2012,37(4):49−54. doi: 10.3969/j.issn.1009-220X.2012.04.009

    Gu Min, Yang Jia, Du Yungui. Effect of titanium dioxide support on the properties for selective catalytic reduction de-NOx catalyst[J]. Guangzhou Chemistry, 2012, 37(4): 49-54. doi: 10.3969/j.issn.1009-220X.2012.04.009
    [14] Zhou Tao, Liu Shaoguang, Tang Mingzao, et al. Research progress on selective catalytic reduction de-NOx catalysts[J]. Journal of the Chinese Ceramic Society, 2009,37(2):317−324. (周涛, 刘少光, 唐名早, 等. 选择性催化还原脱硝催化剂研究进展[J]. 硅酸盐学报, 2009,37(2):317−324. doi: 10.3321/j.issn:0454-5648.2009.02.029

    Zhou Tao, Liu Shaoguang, Tang Mingzao, et al. Research progress on selective catalytic reduction de-NOx catalysts[J]. Journal of the Chinese Ceramic Society, 2009, 37(2): 317-324. doi: 10.3321/j.issn:0454-5648.2009.02.029
    [15] 孙从丽. 粒径均匀的脱硝催化剂载体纳米二氧化钛的制备[D]. 沈阳: 东北师范大学, 2015.

    Sun Congli. The preparation of nanometer titanium dioxide used for denitration catalyst supportor with uniform particle size[D]. Shengyang: Northeast Normal University, 2015.
    [16] Chang Hong, Wang Jinggang. Application of nanocrystalline titania in environmental protection field[J]. Mining & Metallurgy, 2002,11(4):73−76. (常虹, 王京刚. 纳米二氧化钛在环保领域中的应用[J]. 矿冶, 2002,11(4):73−76. doi: 10.3969/j.issn.1005-7854.2002.04.019

    Chang Hong, Wang Jinggang. Application of nanocrystalline titania in environmental protection field[J]. Mining & Metallurgy, 2002, 11(4): 73-76. doi: 10.3969/j.issn.1005-7854.2002.04.019
    [17] Chao S, Petrovsky V, Dogan F. Effects of calcination on the microstructure and dielectric properpties of titanium dioxide ceramics[J]. J. Mater. Sci., 2010,(45):6685−6693.
    [18] Alam M J, Cameron D C. Preparation and characterization of TiO2 thin films by sol-gel method[J]. Journal of Sol-gel Science and Technology, 2002,2592:137−145.
    [19] Ren Jian, Li Guangzhao, Han Rui, et al. In-situ preparation of reduced graphene oxide/titanium dioxide composites by sol-gel method and their photocatalytic properties[J]. Journal of Functional Materials, 2019,7:7185−7190.
    [20] Yang L X, Luo S L, Liu S H, et al. Graphitized carbon nanotubes formed in TiO2 nanotube arrays: A novel functional material with tube-in-tube nanostructure[J]. The Journal of Physical Chemistry C, 2008,112:8939−8943. doi: 10.1021/jp8020613
    [21] Kim D S, Kwak S Y. The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity[J]. Appl. Gatal. Gen., 2007,323:110−118. doi: 10.1016/j.apcata.2007.02.010
    [22] You Jia, Jiang Huan, Han Yanlin, et al. Study on preparation of CdS/TiO2 compositeby microemulsion and its photocatalytic properties[J]. Iron Steel Vanadium Titanium, 2020,41(1):24−31. (尤佳, 江环, 韩炎霖, 等. 微乳液法制备CdS/TiO2复合材料及光催化性能研究[J]. 钢铁钒钛, 2020,41(1):24−31. doi: 10.7513/j.issn.1004-7638.2020.01.005

    You Jia, Jiang Huan, Han Yanlin, et al. Study on preparation of CdS/TiO2 compositeby microemulsion and its photocatalytic properties[J]. Iron Steel Vanadium Titanium, 2020, 41(1): 24-31. doi: 10.7513/j.issn.1004-7638.2020.01.005
    [23] Andronic L, Duta A. TiO2 thin films for dyes photodegradation[J]. Thin Solid Films, 2007,515:6294−6297. doi: 10.1016/j.tsf.2006.11.150
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  13
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回