留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质烘干钛精矿对其酸解性能的影响

王海波 孙科 程晓哲 王斌 吴小平

王海波, 孙科, 程晓哲, 王斌, 吴小平. 生物质烘干钛精矿对其酸解性能的影响[J]. 钢铁钒钛, 2022, 43(3): 33-39. doi: 10.7513/j.issn.1004-7638.2022.03.006
引用本文: 王海波, 孙科, 程晓哲, 王斌, 吴小平. 生物质烘干钛精矿对其酸解性能的影响[J]. 钢铁钒钛, 2022, 43(3): 33-39. doi: 10.7513/j.issn.1004-7638.2022.03.006
Wang Haibo, Sun Ke, Cheng Xiaozhe, Wang Bin, Wu Xiaoping. Effect of biomass drying titanium concentrate on its acid hydrolysis performance[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 33-39. doi: 10.7513/j.issn.1004-7638.2022.03.006
Citation: Wang Haibo, Sun Ke, Cheng Xiaozhe, Wang Bin, Wu Xiaoping. Effect of biomass drying titanium concentrate on its acid hydrolysis performance[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 33-39. doi: 10.7513/j.issn.1004-7638.2022.03.006

生物质烘干钛精矿对其酸解性能的影响

doi: 10.7513/j.issn.1004-7638.2022.03.006
基金项目: 国家自然科学基金项目联合基金项目(基于攀西钛资源的Ti4O7纳米材料的可控制备及其燃料电池高值应用研究,U19A20100)。
详细信息
    作者简介:

    王海波(1985—),男,硕士,高级工程师,主要从事钛资源综合利用方面研究,E-mail: 15273187604@163.com

  • 中图分类号: TF823

Effect of biomass drying titanium concentrate on its acid hydrolysis performance

  • 摘要: 针对生物质烘干钛精矿时出现酸解性能下降现象,通过对比不同烘干方式钛精矿酸解性能差异,查找了其对酸解性能的影响,并开展了酸解性能提升探索试验。试验结果表明:生物质直接烘干的钛精矿中混入生物质及其燃烧残渣后,其相对煤气直接烘干的钛精矿,酸解性能中酸解率及钛液抽速下降,且混入量越大,酸解率及钛液抽速下降越大;当生物质直接烘干的钛精矿C含量为煤气直接烘干钛精矿C含量的4倍时,在反应酸矿比增加0.02,反应酸浓度增加2%,熟化温度增加10 ℃,熟化时间增加1 h的条件下,其酸解率93.00%大于煤气直接烘干钛精矿酸解率90.91%,但其钛液100 mL抽速615 s低于煤气直接烘干钛精矿钛液100 mL抽速122 s,且随着酸解率的提升,钛液抽速降低,通过将生物质直接烘干的钛精矿与煤气直接烘干的钛精矿按照质量比5:95混合后进行酸解,其酸解率、钛液抽速与煤气直接烘干钛精矿的酸解率、钛液抽速基本一致。
  • 图  1  不同烘干方式的钛精矿红外光谱

    Figure  1.  Infrared spectra of titanium concentrate with different drying methods

    图  2  不同烘干方式的钛精矿SEM形貌

    Figure  2.  SEM micrographs of titanium concentrate with different drying methods

    图  3  生物质直接烘干钛精矿工艺示意

    Figure  3.  Process diagram of direct drying titanium concentrate by biomass

    表  1  不同烘干方式的钛精矿主要化学成分

    Table  1.   Main chemical components of titanium concentrate with different drying methods %

    编号CFeOMgOMnOTFeSiO2TiO2Al2O3烘干燃料
    10.08035.704.890.6631.882.4647.290.94煤气
    20.16035.864.990.7032.002.3947.191.06生物质
    30.32035.545.010.6832.002.5347.251.05生物质
    下载: 导出CSV

    表  2  不同烘干方式钛精矿酸解试验结果

    Table  2.   Acid hydrolysis results of titanium concentrate with different drying methods

    编号100 mL抽速/s酸解率/%主反应体积膨胀/mL上清液高度/mL试验现象
    112090.74500400沉降钛液上清液较多,
    过滤后滤纸上基本无黑色残渣
    12290.12510410
    243787.70600150沉降钛液上清液较少,
    过滤后滤纸上有黑色残渣
    43587.60590143
    345078.721000100沉降钛液上清液较少,
    过滤后滤纸上有黑色残渣
    44878.071050104
    下载: 导出CSV

    表  3  不同烘干方式的钛精矿粒度

    Table  3.   Particle sizes of titanium concentrate with different drying methods

    钛精矿编号研磨状态D10 /μmD50 /μmD90/ μm径距烘干燃料
    1磨前47.30110.00213.001.51煤气
    233.3094.80276.002.56生物质
    322.2085.90297.002.98生物质
    1-1磨后3.3238.50110.002.78煤气
    2-12.5326.4097.003.37生物质
    3-11.5715.0068.704.47生物质
    下载: 导出CSV

    表  4  不同烘干方式钛精矿主要物相组成

    Table  4.   Main phase compositions of titanium concentrate with different drying methods %

    编号钛铁矿辉石镁橄榄石磁铁矿透辉石铁铝榴石绿泥石磁黄铁矿铁板钛矿金红石榍石斜长石
    190.033.010.450.861.380.110.870.320.250.010.240.69
    290.113.370.770.801.190.250.920.470.210.070.250.99
    390.532.930.380.820.940.210.770.320.520.010.360.54
    下载: 导出CSV

    表  5  验证及优化试验

    Table  5.   Results of validation and optimization experiments

    编号矿-1∶矿-3酸浓度/%酸矿比熟化温度/℃熟化时间/h酸解率/%100 mL抽速/s备注
    1100∶0831.58155290.91122空白
    20∶100831.58155278.56448
    30∶100851.60155288.28514酸解工
    艺优化
    40∶100851.60165393.00615
    590∶10831.58155287.06186互配
    酸解
    695∶5831.58155291.02132
    下载: 导出CSV
  • [1] Karimia L, Yazdanshenas M E, Khajavi R, et al. Optimizing the photocatalytic properties and the synergistic effects of graphene and nano titanium dioxide immobilized on cotton fabric[J]. Applied Surface Science, 2015,332:665−673. doi: 10.1016/j.apsusc.2015.01.184
    [2] Romanovska N I, Manoryk P A, Ermokhina N I, et al. Effect of structural and dimensional characteristics of TiO2 and its photocatalytic activity in the oxidation of tetracycline[J]. Theoretical and Experimental Chemistry, 2019,55(5):345−353. doi: 10.1007/s11237-019-09627-0
    [3] Sobczyk-guzenda Anna, Szymanski Witold, Jedrzejczak Anna, et al. Bactericidal and photowetting effects of titanium dioxide coatings doped with iron and copper/fluorine deposited on stainless steel substrates[J]. Surface & Coatings Technology, 2018,347:66−75.
    [4] Matsukura A, Onoda H. Influences of additives on phosphoric acid treatment of titanium dioxide as a novel white pigment[J]. Journal of Advanced Ceramics, 2015,4(3):211−216. doi: 10.1007/s40145-015-0151-3
    [5] Kang J, Okabe T H. Removal of iron from titanium ore by selective chlorination using TiCl4 under oxygen content atmosphere[J]. International Journal of Mineral Processing, 2016,149:111−118. doi: 10.1016/j.minpro.2016.02.014
    [6] Bi Sheng. Status of titanium dioxide industry in China and the development prospect[J]. Iron Steel Vanadium Titanium, 2021,42(2):1−4. (毕胜. 近年中国钛白粉行业基本状况及发展展望[J]. 钢铁钒钛, 2021,42(2):1−4. doi: 10.7513/j.issn.1004-7638.2021.02.001

    Bi Sheng. In recent years, the basic situation and development prospect of titanium dioxide industry in China [J]. Iron Steel Vanadium Titanium, 2021, 42 (2): 1-4. doi: 10.7513/j.issn.1004-7638.2021.02.001
    [7] Sneha, Samal. Synthesis and characterization of titanium slag from ilmenite by thermal plasma processing[J]. Journal of Metals, 2016,68(9):1−10.
    [8] Hu Kai, Zhang Run, Li Shengping, et al. Conductivity and melt structure of TiO2-FeO-X ( SiO2, CaO, MgO ) ternary high titanium slag[J]. China Journal of Nonferrous Metals, 2019,29(1):167−175. (胡凯, 张润, 李生平, 等. TiO2-FeO-X(SiO2, CaO, MgO)三元高钛渣导电特性及其熔体结构[J]. 中国有色金属学报, 2019,29(1):167−175.

    Hu Kai, Zhang Run, Li Shengping, et al. Conductivity and melt structure of TiO2-FeO-X ( SiO2, CaO, MgO ) ternary high titanium slag [J]. China Journal of Nonferrous Metals, 2019, 29 (1) : 167-175.
    [9] Lu Changyuan, Zou Xingli, Lu Xionggang, et al. Hydrogen reduction kinetics of Panzhihua ilmenite[J]. The Chinese Journal of Nonferrous Metals, 2016,26(12):3266−3273. doi: 10.1016/S1003-6326(16)64460-6
    [10] Wu Ling, Chen Jiabin, Zhong Shengkui, et al. Effect of mechanical activation-hydrochloric acid atmospheric leaching of ilmenite[J]. China Journal of Nonferrous Metals, 2015,25(1):211−219. (伍凌, 陈嘉彬, 钟胜奎, 等. 机械活化-盐酸常压浸出钛铁矿的影响[J]. 中国有色金属学报, 2015,25(1):211−219. doi: 10.1016/S1003-6326(15)63598-1

    Wu Ling, Chen Jiabin, Zhong Shengkui, et al. Effect of mechanical activation-hydrochloric acid atmospheric leaching of ilmenite [J]. China Journal of Nonferrous Metals, 2015, 25(1): 211-219. doi: 10.1016/S1003-6326(15)63598-1
    [11] Li Yu, Lei Ying, Zhang Libo, et al. Microwave drying characteristics and kinetics of titanium concentrate[J]. Transactions of Nonferrous Metals Society of China, 2011,21(1):202−207. doi: 10.1016/S1003-6326(11)60700-0
    [12] Cai Ning, Chen Chaochun, Wang Yafu, et al. Heat transfer characteristics of vibrating fluidized bed for fine titanium concentrate[J]. Iron Steel Vanadium Titanium, 2001,22(2):33−36. (蔡宁, 陈朝春, 王亚夫, 等. 微细粒级钛精矿振动流化床的传热特性[J]. 钢铁钒钛, 2001,22(2):33−36. doi: 10.3969/j.issn.1004-7638.2001.02.006

    Cai Ning, Chen Chaochun, Wang Yafu, et al. Heat transfer characteristics of vibrating fluidized bed for fine titanium concentrate [J]. Iron Steel Vanadium Titanium , 2001 , 22(2): 33-36. doi: 10.3969/j.issn.1004-7638.2001.02.006
    [13] Sun Yu, Meng Changfang. Study on NO emission characteristics of biomass/bituminous coal powder fuel under air staged combustion[J]. Energy and Environmental Protection, 2021,43(10):1−6. (孙禹, 孟长芳. 生物质/烟煤粉体燃料在空气分级燃烧下NO排放特性研究[J]. 能源与环保, 2021,43(10):1−6.

    Sun Yu, Meng Changfang. Study on NO emission characteristics of biomass/bituminous coal powder fuel under air staged combustion [J]. Energy and Environmental Protection, 2021, 43 (10): 1-6.
    [14] Li Xian, Han Kuihua, Wang Xi, et al. Research progress of biomass briquette fuel additives[J]. Renewable Energy, 2021,39(12):1563−1569. (李贤, 韩奎华, 王茜, 等. 生物质成型燃料添加剂的研究进展[J]. 可再生能源, 2021,39(12):1563−1569. doi: 10.3969/j.issn.1671-5292.2021.12.001

    Li Xian, Han Kuihua, Wang Xi, et al. Research progress of biomass briquette fuel additives [J]. Renewable Energy, 2021, 39 (12): 1563-1569. doi: 10.3969/j.issn.1671-5292.2021.12.001
    [15] Liu Yufei, Tang Jie, Chen Xiaohui, et al. Estimation of thermodynamic properties of complex fuels[J]. Journal of Engineering Thermophysics, 2021,42(11):2775−2779. (刘宇飞, 唐洁, 陈小辉, 等. 复杂燃料热力学性质的估算研究[J]. 工程热物理学报, 2021,42(11):2775−2779.

    Liu Yufei, Tang Jie, Chen Xiaohui, et al. Estimation of thermodynamic properties of complex fuels [J]. Journal of Engineering Thermophysics, 2021, 42 (11) : 2775-2779.
    [16] Richard G Haverkamp, Desiderius Kruger, Ranjeeth Rajashekar. The digestion of New Zealand ilmenite by hydrochloric acid[J]. Hydrometallurgy, 2016,163:198−203. doi: 10.1016/j.hydromet.2016.04.015
    [17] Jonglertjunya, Woranart, Rattanaphan, et al. Kinetics of the dissolution of ilmenite in oxalic and sulfuric acid solutions[J]. Asia-Pacific Journal of Chemical Engineering, 2014,9(1):24−30. doi: 10.1002/apj.1742
    [18] Parapari, ParisaSemsari, Irannajad, et al. Modification of ilmenite surface properties by superficial dissolution method[J]. Minerals Engineering, 2016,9(2):160−167.
    [19] Wang Haibo, Wu Xiaoping, Gao Jian, et al. Kinetics of sulfuric acid leaching of ilmenite[J]. Iron Steel Vanadium Titanium, 2020,41(6):6−10. (王海波, 吴小平, 高健, 等. 硫酸浸取钛铁矿动力学研究[J]. 钢铁钒钛, 2020,41(6):6−10. doi: 10.7513/j.issn.1004-7638.2020.06.002

    Wang Haibo, Wu Xiaoping, Gao Jian, et al. Kinetics of sulfuric acid leaching of ilmenite[J]. Iron Steel Vanadium Titanium , 2020, 41 (6): 6-10. doi: 10.7513/j.issn.1004-7638.2020.06.002
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  12
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回