留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

放电等离子烧结温度对TiB2/Al复合材料结构与性能的影响

卢超 张傲 杨智 刘佳 安旭光 孔清泉 冯威 徐志平

卢超, 张傲, 杨智, 刘佳, 安旭光, 孔清泉, 冯威, 徐志平. 放电等离子烧结温度对TiB2/Al复合材料结构与性能的影响[J]. 钢铁钒钛, 2022, 43(3): 47-52. doi: 10.7513/j.issn.1004-7638.2022.03.008
引用本文: 卢超, 张傲, 杨智, 刘佳, 安旭光, 孔清泉, 冯威, 徐志平. 放电等离子烧结温度对TiB2/Al复合材料结构与性能的影响[J]. 钢铁钒钛, 2022, 43(3): 47-52. doi: 10.7513/j.issn.1004-7638.2022.03.008
Lu Chao, Zhang Ao, Yang Zhi, Liu Jia, An Xuguang, Kong Qingquan, Feng Wei, Xu Zhiping. Effect of spark plasma sintering temperature on structure and properties of TiB2/Al composites[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 47-52. doi: 10.7513/j.issn.1004-7638.2022.03.008
Citation: Lu Chao, Zhang Ao, Yang Zhi, Liu Jia, An Xuguang, Kong Qingquan, Feng Wei, Xu Zhiping. Effect of spark plasma sintering temperature on structure and properties of TiB2/Al composites[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 47-52. doi: 10.7513/j.issn.1004-7638.2022.03.008

放电等离子烧结温度对TiB2/Al复合材料结构与性能的影响

doi: 10.7513/j.issn.1004-7638.2022.03.008
基金项目: 四川省粉末冶金工程技术研究中心开放基金项目(SC-FMYJ2017-08);成都大学人才工程科研启动项目(2081921012)。
详细信息
    作者简介:

    卢超(1985—),男,湖北咸宁人,博士(后),讲师,主要从事先进陶瓷及其复合材料的制备、改性与应用,E-mail:w393698377@126.com

  • 中图分类号: TF821,TF823

Effect of spark plasma sintering temperature on structure and properties of TiB2/Al composites

  • 摘要: 以铝粉为基体、二硼化钛颗粒为增强体,采用放电等离子烧结(SPS)技术制备TiB2/Al复合材料,研究了不同烧结温度(500、525、550 ℃)对复合材料的物相组成、致密度、显微硬度、抗拉/抗压性能的影响。结果表明,所制备复合材料主晶相为α-Al,烧结温度高于525℃时析出少量TiB2相;随着烧结温度升高,复合材料的致密度、硬度、抗拉强度和抗压强度均呈现先增大后减小的趋势,伸长率和压缩率则先减小后增大;烧结温度为525 ℃时,复合材料的综合性能最佳,致密度和显微硬度(HV)分别获得最高值98.57%和49.83,抗拉强度(84.9 MPa)和抗压强度(265.1 MPa)也达到最大值;烧结温度偏高时(550 ℃),材料内部形成孔洞,拉伸过程中出现穿晶断裂现象。
  • 图  1  拉伸试样的形状与尺寸

    Figure  1.  Shape and dimension of tensile samples

    图  2  TiB2/Al复合材料的XRD图谱

    Figure  2.  XRD patterns of TiB2/Al composites

    图  3  TiB2/Al复合材料的致密度和维氏硬度

    Figure  3.  Density and Vickers hardness of TiB2/Al composites

    图  4  TiB2/Al复合材料的拉伸应力-应变曲线

    Figure  4.  Tensile stress-strain curves of TiB2/Al composites

    图  5  不同烧结温度获得TiB2/Al复合材料的拉伸断口形貌

    Figure  5.  Tensile fracture morphology of TiB2/Al composites sintered at different temperatures

    (a) 500 ℃; (b) 525 ℃; (c) 550 ℃

    图  6  TiB2/Al复合材料的压缩应力-应变曲线

    Figure  6.  Compressive stress-strain curves of TiB2/Al composites

  • [1] Bi J, Lei Z, Chen. X, et al. Microstructure and mechanical properties of TiB2-reinforced 7075 aluminum matrix composites fabricated by laser melting deposition[J]. Ceramics International, 2019,45:5680−5692. doi: 10.1016/j.ceramint.2018.12.033
    [2] Qu X, Wang F, Shi C, et al. In situ synthesis of a gamma-Al2O3 whisker reinforced aluminium matrix composite by cold pressing and sintering[J]. Materials Science and Engineering:A, 2018,709:223−231. doi: 10.1016/j.msea.2017.10.063
    [3] Zamani N A B N, Asif Iqbal A K M, Muhammad Nuruzzaman D. Fabrication and characterization of Al2O3 nanoparticle reinforced aluminium matrix composite via powder metallurgy[J]. Materials Today:Proceedings, 2020,29:190−195. doi: 10.1016/j.matpr.2020.05.541
    [4] Deshpande M, Gondil R, Waikar R, et al. Processing and characterization of carbon fiber reinforced aluminium7075[J]. Materials Today:Proceedings, 2018,5:7115−7122. doi: 10.1016/j.matpr.2017.11.376
    [5] Zhu C, Su Y, Wang X, et al. Process optimization, microstructure characterization and thermal properties of mesophase pitch-based carbon fiber reinforced aluminum matrix composites fabricated by vacuum hot pressing[J]. Composites Part B:Engineering, 2021,215:108746. doi: 10.1016/j.compositesb.2021.108746
    [6] Zheng Z, Yang X, Li J, et al. Preparation and properties of graphene nanoplatelets reinforced aluminum composites[J]. Transactions of Nonferrous Metals Society of China, 2021,31:878−886. doi: 10.1016/S1003-6326(21)65546-2
    [7] Yu H, Zhang S Q, Xia J H, et al. Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy[J]. Materials Science and Engineering:A, 2021,802:140669. doi: 10.1016/j.msea.2020.140669
    [8] Xie Y, Huang Y, Wang F, et al. Deformation-driven metallurgy of SiC nanoparticle reinforced aluminum matrix nanocomposites[J]. Journal of Alloys and Compounds, 2020,823:153741. doi: 10.1016/j.jallcom.2020.153741
    [9] Ye T, Xu Y, Ren J. Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite[J]. Materials Science and Engineering:A, 2019,753:146−155. doi: 10.1016/j.msea.2019.03.037
    [10] Sharma P, Dwivedi S P, Sharma R, et al. Microstructural and mechanical behavior of aluminium alloy reinforced with TiC[J]. Materials Today:Proceedings, 2020,25:934−937. doi: 10.1016/j.matpr.2020.03.084
    [11] Cabeza M, Feijoo I, Merino P, et al. Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite[J]. Powder Technology, 2017,321:31−43. doi: 10.1016/j.powtec.2017.07.089
    [12] Chen F, Chen Z, Mao F, et al. TiB2 reinforced aluminum based in situ composites fabricated by stir casting[J]. Materials Science and Engineering:A, 2015,625:357−368. doi: 10.1016/j.msea.2014.12.033
    [13] Chen Z, Sun G A, Wu Y, et al. Multi-scale study of microstructure evolution in hot extruded nano-sized TiB2 particle reinforced aluminum composites[J]. Materials & Design, 2017,116:577−590.
    [14] Zhang L, Li B, Wu H, et al. Microstructure and property characterization of Al-based composites reinforced with CuZrAl particles fabricated by mechanical alloying and spark plasma sintering[J]. Advanced Powder Technology, 2018,29:1695−1702. doi: 10.1016/j.apt.2018.04.004
    [15] Wang Z, Tan J, Sun B A, et al. Fabrication and mechanical properties of Al-based metal matrix composites reinforced with Mg65Cu20Zn5Y10 metallic glass particles[J]. Materials Science and Engineering:A, 2014,600:53−58. doi: 10.1016/j.msea.2014.02.003
    [16] Tan Z, Wang L, Xue Y, et al. High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering[J]. Materials & Design, 2016,109:219−226.
    [17] Li J, Li Y, Wang F, et al. Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement[J]. Materials Science and Engineering:A, 2020,792:139755. doi: 10.1016/j.msea.2020.139755
    [18] Fan C, Ou L, Hu Z, et al. Microstructures and mechanical properties of BP/7A04 Al matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2019,29:2027−2034. doi: 10.1016/S1003-6326(19)65109-5
    [19] Xi L, Guo S, Gu D, et al. Microstructure development, tribological property and underlying mechanism of laser additive manufactured submicro-TiB2 reinforced Al-based composites[J]. Journal of Alloys and Compounds, 2020,819:152980. doi: 10.1016/j.jallcom.2019.152980
    [20] Dong B X, Li Q, Wang Z F, et al. Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution[J]. Composites Part B:Engineering, 2021,217:108912. doi: 10.1016/j.compositesb.2021.108912
    [21] Mozammil S, Karloopia J, Verma R, et al. Effect of varying TiB2 reinforcement and its ageing behaviour on tensile and hardness properties of in-situ Al-4.5%Cu-xTiB2 composite[J]. Journal of Alloys and Compounds, 2019,793:454−466. doi: 10.1016/j.jallcom.2019.04.137
    [22] Dipankar D, Abhijit B, Ajay B. Influence of TiB2 addition on friction and wear behaviour of Al2024-TiB2 ex-situ composites[J]. Transactions of Nonferrous Metals Society of China, 2021,31:1249−1261. doi: 10.1016/S1003-6326(21)65575-9
    [23] Yang Q, Ma Y, Chen Z, et al. A new powder metallurgy routine to fabricate TiB2/Al-Zn-Mg-Cu nanocomposites based on composite powders with pre-embedded nanoparticles[J]. Materialia, 2019,8:100458. doi: 10.1016/j.mtla.2019.100458
    [24] Nguyen V H, Shahedi Asl M, Hamidzadeh Mahaseni Z, et al. Role of co-addition of BN and SiC on microstructure of TiB2-based composites densified by SPS method[J]. Ceramics International, 2020,46:25341−25350. doi: 10.1016/j.ceramint.2020.07.001
    [25] Sulima I, Putyra P, Hyjek P, et al. Effect of SPS parameters on densification and properties of steel matrix composites[J]. Advanced Powder Technology, 2015,26:1152−1161. doi: 10.1016/j.apt.2015.05.010
    [26] Muhammad W N A W, Sajuri Z, Mutoh Y, et al. Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology[J]. Journal of Alloys and Compounds, 2011,509:6021−6029. doi: 10.1016/j.jallcom.2011.02.153
    [27] Ma Y, Addad A, Ji G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite[J]. Acta Materialia, 2020,185:287−299. doi: 10.1016/j.actamat.2019.11.068
    [28] Wang H, Zhang H, Cui Z, et al. Compressive response and microstructural evolution of in-situ TiB2 particle-reinforced 7075 aluminum matrix composite[J]. Transactions of Nonferrous Metals Society of China, 2021,31:1235−1248. doi: 10.1016/S1003-6326(21)65574-7
  • 加载中
图(6)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  17
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-26
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回