留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti(C0.5N0.5)颗粒增强钛基复合材料显微组织和力学性能的研究

韩威 姜中涛 杨鑫 敬小龙

韩威, 姜中涛, 杨鑫, 敬小龙. Ti(C0.5N0.5)颗粒增强钛基复合材料显微组织和力学性能的研究[J]. 钢铁钒钛, 2022, 43(3): 59-64. doi: 10.7513/j.issn.1004-7638.2022.03.010
引用本文: 韩威, 姜中涛, 杨鑫, 敬小龙. Ti(C0.5N0.5)颗粒增强钛基复合材料显微组织和力学性能的研究[J]. 钢铁钒钛, 2022, 43(3): 59-64. doi: 10.7513/j.issn.1004-7638.2022.03.010
Han Wei, Jiang Zhongtao, Yang Xin, Jing Xiaolong. Research on microstructure and mechanical properties of Ti(C0.5N0.5) particle reinforced Ti matrix composites[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 59-64. doi: 10.7513/j.issn.1004-7638.2022.03.010
Citation: Han Wei, Jiang Zhongtao, Yang Xin, Jing Xiaolong. Research on microstructure and mechanical properties of Ti(C0.5N0.5) particle reinforced Ti matrix composites[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 59-64. doi: 10.7513/j.issn.1004-7638.2022.03.010

Ti(C0.5N0.5)颗粒增强钛基复合材料显微组织和力学性能的研究

doi: 10.7513/j.issn.1004-7638.2022.03.010
基金项目: 重庆市教育委员会科技项目(No.KJQN202001306)。
详细信息
    作者简介:

    韩威(1995—),男,汉族,四川眉山人,硕士研究生,研究方向:钛基复合材料,E-mail: 3233002784@qq.com

    通讯作者:

    姜中涛,男,汉族,副教授,研究方向:金属基复合材料,E-mail: jiangtao6364@163.com

  • 中图分类号: TF823,TG146.2

Research on microstructure and mechanical properties of Ti(C0.5N0.5) particle reinforced Ti matrix composites

  • 摘要: 以纯Ti粉、Ti(C0.5N0.5) 颗粒为原料,采用粉末冶金工艺,制备了Ti(C0.5N0.5)颗粒增强钛基复合材料,研究了Ti(C0.5N0.5) 含量对钛基复合材料组织和力学性能的影响。结果表明:Ti(C0.5N0.5) 颗粒的添加,显著细化了钛基体的晶粒,晶粒形貌由粗大的柱状晶转变为细小的等轴晶;随着Ti(C0.5N0.5) 含量的增加,钛基复合材料的孔隙明显减少,致密度提高,钛基复合材料的硬度和屈服强度逐渐增加,但压缩应变逐渐减小。
  • 图  1  不同Ti(C0.5N0.5) 含量的钛基复合材料的XRD图谱

    Figure  1.  XRD patterns of Ti matrix composites with different Ti(C0.5N0.5) contents

    图  2  不同Ti(C0.5N0.5) 含量的钛基复合材料的显微组织

    Figure  2.  Microstructure of Ti matrix composites with different Ti(C0.5N0.5) contents

    图  3  TMC4试样EDX 能谱

    Figure  3.  EDX spectrum of TMC4 sample

    图  4  不同Ti(C0.5N0.5) 含量的钛基复合材料的压缩应力-应变曲线

    Figure  4.  Compressive stress-strain curves of titanium matrix composites with different Ti(C0.5N0.5) contents

    图  5  不同Ti(C0.5N0.5) 含量的钛基复合材料的硬度

    Figure  5.  Hardness of titanium matrix composites with different Ti(C0.5N0.5) contents

    表  1  纯钛和钛基复合材料的原料配比

    Table  1.   Raw materials ratio of pure titanium and titanium matrix composites

    材料编号w(Ti)/%w(碳氮化钛)/%
    A(CP Ti)100.00
    B(TMC2)97.03
    C(TMC3)94.06
    D(TMC4)91.09
    下载: 导出CSV

    表  2  不同Ti(C0.5N0.5) 含量的钛基复合材料实际密度和理论密度

    Table  2.   The actual density and theoretical density of Ti matrix composites with different Ti(C0.5N0.5) contents

    材料编号实际密度/(g·cm−3)理论密度/(g·cm−3)致密度/%
    A(CP Ti)4.344.5096.48
    B(TMC2)4.444.5298.20
    C(TMC3)4.464.5398.60
    D(TMC4)4.484.5498.53
    下载: 导出CSV

    表  3  不同Ti(C0.5N0.5) 含量的钛基复合材料的压缩性能

    Table  3.   Compression properties of titanium matrix composites with different Ti(C0.5N0.5) contents

    材料编号抗压屈服强度/MPa抗压强度/MPa压缩应变/%
    CP Ti850.01849.341.2
    TMC21430.22498.141.6
    TMC31603.32473.333.9
    TMC41710.12444.028.4
    下载: 导出CSV
  • [1] Ji Bo, Huang Guangfa, Mao Jianwei. Effect of isothermal extrusion deformation on microstructure and mechanical properties of (TiB+TiC) reinforced titanium matrix composites at room temperature[J]. Titanium Industry Progress, 2018,35(3):16−21. (计波, 黄光法, 毛建伟. 等温挤压变形量对(TiB+TiC)增强钛基复合材料组织和室温力学性能的影响[J]. 钛工业进展, 2018,35(3):16−21.

    Ji Bo, Huang Guangfa, Mao Jianwei. Effect of isothermal extrusion deformation on microstructure and mechanical properties of (TiB+TiC)reinforced titanium matrix composites at room temperature [J]. Titanium Industry Progress, 2018, 35(3): 16-21.
    [2] 孙亮. 原位自生(TiC+TiB)增强钛基复合材料组织调控与耐磨性[D]. 沈阳: 沈阳工业大学, 2018.

    Sun Liang. In situ (TiC+TiB) enhanced microstructure regulation and wear resistance of titanium matrix composites[D]. Shenyang: Shenyang University of Technology, 2018.
    [3] Han Yuanfei, Le Jianwen, Fang Minghan, et al. Preparation, processing and aerospace application of high performance in-situ titanium matrix composites[J]. Progress of Materials in China, 2020,39(12):945−954. (韩远飞, 乐建温, 方旻翰, 等. 高性能原位自生钛基复合材料制备加工与航天应用探索[J]. 中国材料进展, 2020,39(12):945−954.

    Han Yuanfei, Le Jianwen, Fang Minghan, et al. Preparation, processing and aerospace application of high performance in-situ titanium matrix composites[J]. Progress of Materials in China, 2020, 39(12): 945-954.
    [4] Han Yuanfei, Sun Xianglong, Qiu Peikun, et al. Research and progress on advanced processing technology of particle reinforced titanium matrix composites[J]. Journal of Composite Materials, 2017,34(8):1625−1635. (韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017,34(8):1625−1635.

    Han Yuanfei, Sun Xianglong, Qiu Peikun, et al. Research and progress on advanced processing technology of particle reinforced titanium matrix composites[J]. Journal of Composite Materials, 2017, 34(8): 1625-1635.
    [5] Fu Binguo, Li Chaozhi, Liu Jinhai, et al. Application and prospect of in-situ synthesis technology in discontinuous reinforced titanium matrix composites[J]. Casting, 2018,67(4):312−316. (付彬国, 李朝志, 刘金海, 等. 原位合成技术在非连续增强钛基复合材料中的应用及展望[J]. 铸造, 2018,67(4):312−316. doi: 10.3969/j.issn.1001-4977.2018.04.005

    Fu Binguo, Li Chaozhi, Liu Jinhai, et al. Application and prospect of in-situ synthesis technology in discontinuous reinforced titanium matrix composites [J]. Casting, 2018, 67(4): 312-316. doi: 10.3969/j.issn.1001-4977.2018.04.005
    [6] Lai Xiaojun, Li Shaopeng, Han Yuanfei, et al. Research progress on composite design and advanced machining technology of multi-dimensional and multi-scale reinforced titanium matrix composites[J]. Titanium IndustryProgress, 2020,37(3):40−48. (来晓君, 李劭鹏, 韩远飞, 等. 多元多尺度增强钛基复合材料复合设计与先进加工技术研究进展[J]. 钛工业进展, 2020,37(3):40−48.

    Lai Xiaojun, Li Shaopeng, Han Yuanfei, et al. Research progress on composite design and advanced machining technology of multi-dimensional and multi-scale reinforced titanium matrix composites [J]. Titanium IndustryProgress, 2020, 37(3): 40-48.
    [7] Liu Shifeng, Song Xi, Xue Tong, et al. Application and development of titanium alloy and titanium matrix composites in aerospace[J]. Journal of Aeronautical Materials, 2020,40(3):77−94. (刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020,40(3):77−94. doi: 10.11868/j.issn.1005-5053.2020.000061

    Liu Shifeng, Song Xi, Xue Tong, et al. Application and development of titanium alloy and titanium matrix composites in aerospace [J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94. doi: 10.11868/j.issn.1005-5053.2020.000061
    [8] Zhou Haitao, Kong Fantao, Chen Yuyong. Progress in powder metallurgy of TiAl intermetallic compounds[J]. Rare Metal Materials and Engineering, 2016,45(9):2466−2472. (周海涛, 孔凡涛, 陈玉勇. TiAl金属间化合物粉末冶金技术研究进展[J]. 稀有金属材料与工程, 2016,45(9):2466−2472.

    Zhou Haitao, Kong Fantao, Chen Yuyong. Progress in powder metallurgy of TiAl intermetallic compounds [J]. Rare Metal Materials and Engineering, 2016, 45(9): 2466-2472.
    [9] Lin Xuejian, Dong Fuyu, Zhang Shixin, et al. Effect of (TiC+TiB) content on microstructure and mechanical properties of TC4 alloy[J]. Hot Working Technology, 2019,(6):133−137. (林雪健, 董福宇, 张世鑫, 等. 不同含量(TiC+TiB)对TC4合金组织和力学性能的影响[J]. 热加工工艺, 2019,(6):133−137.

    Lin Xuejian, Dong Fuyu, Zhang Shixin, et al. Effect of (TiC+TiB) content on microstructure and mechanical properties of TC4 alloy [J]. Hot Working Technology, 2019(6): 133-137.
    [10] Ma F, Zhou J, Liu P, et al. Strengthening effects of TiC particles and microstructure refinement in in situ TiC-reinforced Ti matrix composites[J]. Materials Characterization, 2017,127:27−34. doi: 10.1016/j.matchar.2017.02.004
    [11] Jiao Y, Huang L, Geng L. Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Alloys and Compounds, 2018,767:1196−1215. doi: 10.1016/j.jallcom.2018.07.100
    [12] Vasanthakumar K, Ghosh S, Koundinya N, et al. Synthesis and mechanical properties of TiCx and Ti (C, N) reinforced titanium matrix in situ composites by reactive spark plasma sintering[J]. Materials Science and Engineering:A, 2019,759:30−39. doi: 10.1016/j.msea.2019.05.021
    [13] 冯俊. 原位生成(TiC、TiB)/Ti基复合材料的组织与性能研究[D]. 重庆: 西南大学, 2020.

    Feng Jun. Study on microstructure and properties of in situ (TiC, TiB)/Ti matrix composites[D]. Chongqing: Southwest University, 2020.
    [14] Zhang X, Song F, Wei Z, et al. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction[J]. Materials Science and Engineering:A, 2017,705:153−159. doi: 10.1016/j.msea.2017.08.079
    [15] 毛小南. TiC颗粒增强钛基复合材料的内应力对材料机械性能的影响[D]. 西安: 西北工业大学, 2004.

    Mao Xiaonan. Effect of internal stress on mechanical properties of TiC particle reinforced titanium matrix composites[D]. Xi, an: Northwestern Polytechnical University, 2004.
    [16] 任伟玮. TiCN复合陶瓷的制备及性能探究[D]. 广州: 广东工业大学, 2018.

    Ren Weiwei. Preparation and properties of TiCN composite ceramics[D]. Guangzhou: Guangdong University of Technology, 2018.
    [17] Lagos M A, Agote I, Atxaga G, et al. Fabrication and characterisation of titanium matrix composites obtained using a combination of self propagating high temperature synthesis and spark plasma sintering[J]. Materials Science and Engineering:A, 2016,655:44−49. doi: 10.1016/j.msea.2015.12.050
    [18] Li Ziyang, Wang Sijia, Deng Wenju. Research progress of ceramic particle reinforced metal matrix composites[J]. Light Industry Science and Technology, 2021,37(4):41−44. (李滋阳, 王思佳, 邓文举. 陶瓷颗粒增强金属基复合材料研究进展[J]. 轻工科技, 2021,37(4):41−44.

    Li Ziyang, Wang Sijia, Deng Wenju. Research progress of ceramic particle reinforced metal matrix composites [J]. Light Industry Science and Technology, 2021, 37(4): 41-44.
    [19] 刘嘉威. 碳氮化钛粉末的合成及其成型工艺研究[D]. 厦门: 厦门理工学院, 2020.

    Liu Jiawei. Carbon titanium nitride powder synthesis and molding process of the research[D]. Xiamen: Xiamen institute of technology, 2020.
    [20] 杜康鸿,柳中强,张建涛,等.基于高通量的原位制备网状结构TiC增强TC4复合材料的组织与性能[J/OL].粉末冶金材料科学与工程:1−10.[2021-12-29].DOI: 10.19976/j.cnki.43-1448/TF.2021070.

    Du Kanghong, Liu Zhongqiang, Zhang Jiantao, et al. Microstructure and properties of TiC reinforced TC4 composites prepared in situ based on high throughput [J/OL]. Powder Metallurgy Materials Science and Engineering: 1−10. [2021-12-29]. DOI:10.19976/j.cnki.43-1448/ TF.2021070.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  20
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回