中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti(C0.5N0.5)颗粒增强钛基复合材料显微组织和力学性能的研究

韩威 姜中涛 杨鑫 敬小龙

韩威, 姜中涛, 杨鑫, 敬小龙. Ti(C0.5N0.5)颗粒增强钛基复合材料显微组织和力学性能的研究[J]. 钢铁钒钛, 2022, 43(3): 59-64. doi: 10.7513/j.issn.1004-7638.2022.03.010
引用本文: 韩威, 姜中涛, 杨鑫, 敬小龙. Ti(C0.5N0.5)颗粒增强钛基复合材料显微组织和力学性能的研究[J]. 钢铁钒钛, 2022, 43(3): 59-64. doi: 10.7513/j.issn.1004-7638.2022.03.010
Han Wei, Jiang Zhongtao, Yang Xin, Jing Xiaolong. Research on microstructure and mechanical properties of Ti(C0.5N0.5) particle reinforced Ti matrix composites[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 59-64. doi: 10.7513/j.issn.1004-7638.2022.03.010
Citation: Han Wei, Jiang Zhongtao, Yang Xin, Jing Xiaolong. Research on microstructure and mechanical properties of Ti(C0.5N0.5) particle reinforced Ti matrix composites[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 59-64. doi: 10.7513/j.issn.1004-7638.2022.03.010

Ti(C0.5N0.5)颗粒增强钛基复合材料显微组织和力学性能的研究

doi: 10.7513/j.issn.1004-7638.2022.03.010
基金项目: 重庆市教育委员会科技项目(No.KJQN202001306)。
详细信息
    作者简介:

    韩威(1995—),男,汉族,四川眉山人,硕士研究生,研究方向:钛基复合材料,E-mail: 3233002784@qq.com

    通讯作者:

    姜中涛,男,汉族,副教授,研究方向:金属基复合材料,E-mail: jiangtao6364@163.com

  • 中图分类号: TF823,TG146.2

Research on microstructure and mechanical properties of Ti(C0.5N0.5) particle reinforced Ti matrix composites

  • 摘要: 以纯Ti粉、Ti(C0.5N0.5) 颗粒为原料,采用粉末冶金工艺,制备了Ti(C0.5N0.5)颗粒增强钛基复合材料,研究了Ti(C0.5N0.5) 含量对钛基复合材料组织和力学性能的影响。结果表明:Ti(C0.5N0.5) 颗粒的添加,显著细化了钛基体的晶粒,晶粒形貌由粗大的柱状晶转变为细小的等轴晶;随着Ti(C0.5N0.5) 含量的增加,钛基复合材料的孔隙明显减少,致密度提高,钛基复合材料的硬度和屈服强度逐渐增加,但压缩应变逐渐减小。
  • 图  1  不同Ti(C0.5N0.5) 含量的钛基复合材料的XRD图谱

    Figure  1.  XRD patterns of Ti matrix composites with different Ti(C0.5N0.5) contents

    图  2  不同Ti(C0.5N0.5) 含量的钛基复合材料的显微组织

    Figure  2.  Microstructure of Ti matrix composites with different Ti(C0.5N0.5) contents

    图  3  TMC4试样EDX 能谱

    Figure  3.  EDX spectrum of TMC4 sample

    图  4  不同Ti(C0.5N0.5) 含量的钛基复合材料的压缩应力-应变曲线

    Figure  4.  Compressive stress-strain curves of titanium matrix composites with different Ti(C0.5N0.5) contents

    图  5  不同Ti(C0.5N0.5) 含量的钛基复合材料的硬度

    Figure  5.  Hardness of titanium matrix composites with different Ti(C0.5N0.5) contents

    表  1  纯钛和钛基复合材料的原料配比

    Table  1.   Raw materials ratio of pure titanium and titanium matrix composites

    材料编号w(Ti)/%w(碳氮化钛)/%
    A(CP Ti)100.00
    B(TMC2)97.03
    C(TMC3)94.06
    D(TMC4)91.09
    下载: 导出CSV

    表  2  不同Ti(C0.5N0.5) 含量的钛基复合材料实际密度和理论密度

    Table  2.   The actual density and theoretical density of Ti matrix composites with different Ti(C0.5N0.5) contents

    材料编号实际密度/(g·cm−3)理论密度/(g·cm−3)致密度/%
    A(CP Ti)4.344.5096.48
    B(TMC2)4.444.5298.20
    C(TMC3)4.464.5398.60
    D(TMC4)4.484.5498.53
    下载: 导出CSV

    表  3  不同Ti(C0.5N0.5) 含量的钛基复合材料的压缩性能

    Table  3.   Compression properties of titanium matrix composites with different Ti(C0.5N0.5) contents

    材料编号抗压屈服强度/MPa抗压强度/MPa压缩应变/%
    CP Ti850.01849.341.2
    TMC21430.22498.141.6
    TMC31603.32473.333.9
    TMC41710.12444.028.4
    下载: 导出CSV
  • [1] Ji Bo, Huang Guangfa, Mao Jianwei. Effect of isothermal extrusion deformation on microstructure and mechanical properties of (TiB+TiC) reinforced titanium matrix composites at room temperature[J]. Titanium Industry Progress, 2018,35(3):16−21. (计波, 黄光法, 毛建伟. 等温挤压变形量对(TiB+TiC)增强钛基复合材料组织和室温力学性能的影响[J]. 钛工业进展, 2018,35(3):16−21.

    Ji Bo, Huang Guangfa, Mao Jianwei. Effect of isothermal extrusion deformation on microstructure and mechanical properties of (TiB+TiC)reinforced titanium matrix composites at room temperature [J]. Titanium Industry Progress, 2018, 35(3): 16-21.
    [2] 孙亮. 原位自生(TiC+TiB)增强钛基复合材料组织调控与耐磨性[D]. 沈阳: 沈阳工业大学, 2018.

    Sun Liang. In situ (TiC+TiB) enhanced microstructure regulation and wear resistance of titanium matrix composites[D]. Shenyang: Shenyang University of Technology, 2018.
    [3] Han Yuanfei, Le Jianwen, Fang Minghan, et al. Preparation, processing and aerospace application of high performance in-situ titanium matrix composites[J]. Progress of Materials in China, 2020,39(12):945−954. (韩远飞, 乐建温, 方旻翰, 等. 高性能原位自生钛基复合材料制备加工与航天应用探索[J]. 中国材料进展, 2020,39(12):945−954.

    Han Yuanfei, Le Jianwen, Fang Minghan, et al. Preparation, processing and aerospace application of high performance in-situ titanium matrix composites[J]. Progress of Materials in China, 2020, 39(12): 945-954.
    [4] Han Yuanfei, Sun Xianglong, Qiu Peikun, et al. Research and progress on advanced processing technology of particle reinforced titanium matrix composites[J]. Journal of Composite Materials, 2017,34(8):1625−1635. (韩远飞, 孙相龙, 邱培坤, 等. 颗粒增强钛基复合材料先进加工技术研究与进展[J]. 复合材料学报, 2017,34(8):1625−1635.

    Han Yuanfei, Sun Xianglong, Qiu Peikun, et al. Research and progress on advanced processing technology of particle reinforced titanium matrix composites[J]. Journal of Composite Materials, 2017, 34(8): 1625-1635.
    [5] Fu Binguo, Li Chaozhi, Liu Jinhai, et al. Application and prospect of in-situ synthesis technology in discontinuous reinforced titanium matrix composites[J]. Casting, 2018,67(4):312−316. (付彬国, 李朝志, 刘金海, 等. 原位合成技术在非连续增强钛基复合材料中的应用及展望[J]. 铸造, 2018,67(4):312−316. doi: 10.3969/j.issn.1001-4977.2018.04.005

    Fu Binguo, Li Chaozhi, Liu Jinhai, et al. Application and prospect of in-situ synthesis technology in discontinuous reinforced titanium matrix composites [J]. Casting, 2018, 67(4): 312-316. doi: 10.3969/j.issn.1001-4977.2018.04.005
    [6] Lai Xiaojun, Li Shaopeng, Han Yuanfei, et al. Research progress on composite design and advanced machining technology of multi-dimensional and multi-scale reinforced titanium matrix composites[J]. Titanium IndustryProgress, 2020,37(3):40−48. (来晓君, 李劭鹏, 韩远飞, 等. 多元多尺度增强钛基复合材料复合设计与先进加工技术研究进展[J]. 钛工业进展, 2020,37(3):40−48.

    Lai Xiaojun, Li Shaopeng, Han Yuanfei, et al. Research progress on composite design and advanced machining technology of multi-dimensional and multi-scale reinforced titanium matrix composites [J]. Titanium IndustryProgress, 2020, 37(3): 40-48.
    [7] Liu Shifeng, Song Xi, Xue Tong, et al. Application and development of titanium alloy and titanium matrix composites in aerospace[J]. Journal of Aeronautical Materials, 2020,40(3):77−94. (刘世锋, 宋玺, 薛彤, 等. 钛合金及钛基复合材料在航空航天的应用和发展[J]. 航空材料学报, 2020,40(3):77−94. doi: 10.11868/j.issn.1005-5053.2020.000061

    Liu Shifeng, Song Xi, Xue Tong, et al. Application and development of titanium alloy and titanium matrix composites in aerospace [J]. Journal of Aeronautical Materials, 2020, 40(3): 77-94. doi: 10.11868/j.issn.1005-5053.2020.000061
    [8] Zhou Haitao, Kong Fantao, Chen Yuyong. Progress in powder metallurgy of TiAl intermetallic compounds[J]. Rare Metal Materials and Engineering, 2016,45(9):2466−2472. (周海涛, 孔凡涛, 陈玉勇. TiAl金属间化合物粉末冶金技术研究进展[J]. 稀有金属材料与工程, 2016,45(9):2466−2472.

    Zhou Haitao, Kong Fantao, Chen Yuyong. Progress in powder metallurgy of TiAl intermetallic compounds [J]. Rare Metal Materials and Engineering, 2016, 45(9): 2466-2472.
    [9] Lin Xuejian, Dong Fuyu, Zhang Shixin, et al. Effect of (TiC+TiB) content on microstructure and mechanical properties of TC4 alloy[J]. Hot Working Technology, 2019,(6):133−137. (林雪健, 董福宇, 张世鑫, 等. 不同含量(TiC+TiB)对TC4合金组织和力学性能的影响[J]. 热加工工艺, 2019,(6):133−137.

    Lin Xuejian, Dong Fuyu, Zhang Shixin, et al. Effect of (TiC+TiB) content on microstructure and mechanical properties of TC4 alloy [J]. Hot Working Technology, 2019(6): 133-137.
    [10] Ma F, Zhou J, Liu P, et al. Strengthening effects of TiC particles and microstructure refinement in in situ TiC-reinforced Ti matrix composites[J]. Materials Characterization, 2017,127:27−34. doi: 10.1016/j.matchar.2017.02.004
    [11] Jiao Y, Huang L, Geng L. Progress on discontinuously reinforced titanium matrix composites[J]. Journal of Alloys and Compounds, 2018,767:1196−1215. doi: 10.1016/j.jallcom.2018.07.100
    [12] Vasanthakumar K, Ghosh S, Koundinya N, et al. Synthesis and mechanical properties of TiCx and Ti (C, N) reinforced titanium matrix in situ composites by reactive spark plasma sintering[J]. Materials Science and Engineering:A, 2019,759:30−39. doi: 10.1016/j.msea.2019.05.021
    [13] 冯俊. 原位生成(TiC、TiB)/Ti基复合材料的组织与性能研究[D]. 重庆: 西南大学, 2020.

    Feng Jun. Study on microstructure and properties of in situ (TiC, TiB)/Ti matrix composites[D]. Chongqing: Southwest University, 2020.
    [14] Zhang X, Song F, Wei Z, et al. Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction[J]. Materials Science and Engineering:A, 2017,705:153−159. doi: 10.1016/j.msea.2017.08.079
    [15] 毛小南. TiC颗粒增强钛基复合材料的内应力对材料机械性能的影响[D]. 西安: 西北工业大学, 2004.

    Mao Xiaonan. Effect of internal stress on mechanical properties of TiC particle reinforced titanium matrix composites[D]. Xi, an: Northwestern Polytechnical University, 2004.
    [16] 任伟玮. TiCN复合陶瓷的制备及性能探究[D]. 广州: 广东工业大学, 2018.

    Ren Weiwei. Preparation and properties of TiCN composite ceramics[D]. Guangzhou: Guangdong University of Technology, 2018.
    [17] Lagos M A, Agote I, Atxaga G, et al. Fabrication and characterisation of titanium matrix composites obtained using a combination of self propagating high temperature synthesis and spark plasma sintering[J]. Materials Science and Engineering:A, 2016,655:44−49. doi: 10.1016/j.msea.2015.12.050
    [18] Li Ziyang, Wang Sijia, Deng Wenju. Research progress of ceramic particle reinforced metal matrix composites[J]. Light Industry Science and Technology, 2021,37(4):41−44. (李滋阳, 王思佳, 邓文举. 陶瓷颗粒增强金属基复合材料研究进展[J]. 轻工科技, 2021,37(4):41−44.

    Li Ziyang, Wang Sijia, Deng Wenju. Research progress of ceramic particle reinforced metal matrix composites [J]. Light Industry Science and Technology, 2021, 37(4): 41-44.
    [19] 刘嘉威. 碳氮化钛粉末的合成及其成型工艺研究[D]. 厦门: 厦门理工学院, 2020.

    Liu Jiawei. Carbon titanium nitride powder synthesis and molding process of the research[D]. Xiamen: Xiamen institute of technology, 2020.
    [20] 杜康鸿,柳中强,张建涛,等.基于高通量的原位制备网状结构TiC增强TC4复合材料的组织与性能[J/OL].粉末冶金材料科学与工程:1−10.[2021-12-29].DOI: 10.19976/j.cnki.43-1448/TF.2021070.

    Du Kanghong, Liu Zhongqiang, Zhang Jiantao, et al. Microstructure and properties of TiC reinforced TC4 composites prepared in situ based on high throughput [J/OL]. Powder Metallurgy Materials Science and Engineering: 1−10. [2021-12-29]. DOI:10.19976/j.cnki.43-1448/ TF.2021070.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  54
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回