留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于搅拌摩擦加工的汽车钛合金组织与性能研究

李莎莎 王磊 吕欣蕊 于丽丽

李莎莎, 王磊, 吕欣蕊, 于丽丽. 基于搅拌摩擦加工的汽车钛合金组织与性能研究[J]. 钢铁钒钛, 2022, 43(3): 71-76. doi: 10.7513/j.issn.1004-7638.2022.03.012
引用本文: 李莎莎, 王磊, 吕欣蕊, 于丽丽. 基于搅拌摩擦加工的汽车钛合金组织与性能研究[J]. 钢铁钒钛, 2022, 43(3): 71-76. doi: 10.7513/j.issn.1004-7638.2022.03.012
Li Shasha, Wang Lei, Lv Xinrui, Yu Lili. Study on the microstructure and mechanical properties of the automotive titanium alloy based on friction stir processing[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 71-76. doi: 10.7513/j.issn.1004-7638.2022.03.012
Citation: Li Shasha, Wang Lei, Lv Xinrui, Yu Lili. Study on the microstructure and mechanical properties of the automotive titanium alloy based on friction stir processing[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(3): 71-76. doi: 10.7513/j.issn.1004-7638.2022.03.012

基于搅拌摩擦加工的汽车钛合金组织与性能研究

doi: 10.7513/j.issn.1004-7638.2022.03.012
基金项目: 河北省自然科学基金资助项目(A2012209030)。
详细信息
    作者简介:

    李莎莎(1988—),女 ,汉族, 河北沧州人,硕士,讲师,主要从事汽车机械类、汽车电控类研究,E-mail: louzifan560975127@163.com

    通讯作者:

    王磊(1987—),女, 汉族, 河北沧州人,硕士,讲师,主要从事材料科学类、汽车机械类、汽车服务类研究,E-mail: MoLiMoLi2017@163.com

  • 中图分类号: TF823,TG146.2

Study on the microstructure and mechanical properties of the automotive titanium alloy based on friction stir processing

  • 摘要: 采用不同的主轴旋转速度和行进速度对铸态Ti8LC汽车钛合金进行了搅拌摩擦加工改性试验,并测试和对比分析了合金试样的显微组织和力学性能。结果表明,改性后合金内部晶粒明显细化、组织分布均匀性得到改善、力学性能显著提高。在轴肩下压量0.2 mm和主轴倾斜角度2.5°不变的情况下,随主轴旋转速度从200 r/min增大到400 r/min或行进速度从30 mm/s加快到90 mm/s,改性钛合金试样的晶粒先细化后粗化、力学性能先提高后下降。主轴旋转速度300 r/min,行进速度60 mm/s时改性钛合金试样的力学性能最佳,抗拉强度和屈服强度分别为1 046、729 MPa,延伸率为12.7%;与铸态Ti8LC汽车钛合金相比,改性后试样的抗拉强度和屈服强度分别增大118、125 MPa,其增幅分别达12.7%、20.7%。
  • 图  1  合金试样显微组织

    (a)铸态试样;(b) FSP1#试样 ;(c) FSP2#试样;(d) FSP3#试样

    Figure  1.  Microstructures of the alloy specimens

    图  2  不同行进速度FSP改性合金试样显微组织

    Figure  2.  Microstructures of the alloy specimens by FSP with different travel speeds

    图  3  不同主轴转速下合金试样力学性能测试结果

    Figure  3.  Tensile properties of the alloy specimens at different spindle rotation speeds

    图  4  不同行进速度FSP改性合金试样力学性能

    Figure  4.  Tensile properties of the alloy specimens by FSP at different travel speeds

    图  5  合金试样拉伸断口SEM形貌

    (a)铸态试样;(b) FSP1#试样; (c) FSP2#试样;(d) FSP3#试样

    Figure  5.  SEM images of the fracture surfaces of the alloy specimens

    表  1  Ti8LC合金试样化学成分

    Table  1.   Chemical composition of the Ti8LC alloy specimen %

    AlMoFeCNHO其它杂质元素Ti
    5.9582.0161.4920.0220.0150.0110.106<0.150余量
    下载: 导出CSV

    表  2  合金试样FSP工艺参数

    Table  2.   FSP Process parameters of the alloy specimen

    试样编号主轴旋转速度/(r·min−1行进速度/(mm·s−1轴肩下压量/mm主轴倾斜角度/(°)
    FSP1#200600.22.5
    FSP2#300600.22.5
    FSP3#400600.22.5
    FSP4#300300.22.5
    FSP5#300900.22.5
    下载: 导出CSV

    表  3  金相腐蚀液组成

    Table  3.   Ratio of the metallographic corrosion agent mL

    氢氟酸硝酸无水乙醇去离子水
    151020105
    下载: 导出CSV
  • [1] Zhang Yan, Pang Youjun, Li Yang. Titanium alloy and automobile lightweight technology[J]. Auto Time, 2019,(19):12−14. (张妍, 庞有俊, 李杨. 钛合金与汽车轻量化技术[J]. 时代汽车, 2019,(19):12−14.

    Zhang Yan, Pang Youjun, Li Yang. Titanium alloy and automobile lightweight technology[J]. Auto Time, 2019(19): 12-14.
    [2] Chen Zhenglong, Yang Xiao. Application of titanium alloy in modern automobile industry[J]. Modern Components, 2017,(9):46−47. (陈政龙, 杨晓. 钛合金在现代汽车工业中的应用[J]. 汽车工艺师, 2017,(9):46−47. doi: 10.3969/j.issn.1672-657X.2017.09.013

    Chen Zhenglong, Yang Xiao. Application of titanium alloy in modern automobile industry[J]. Modern Components, 2017(9): 46-47. doi: 10.3969/j.issn.1672-657X.2017.09.013
    [3] Sun Feng, Yin Xiaoli, Zhao Da. Rolling process optimization of vanadium microalloyed automobile titanium alloy[J]. Iron Steel Vanadium Titanium, 2020,41(3):59−63. (孙凤, 尹晓丽, 赵达. 钒微合金化汽车钛合金的轧制工艺优化[J]. 钢铁钒钛, 2020,41(3):59−63. doi: 10.7513/j.issn.1004-7638.2020.03.009

    Sun Feng, Yin Xiaoli, Zhao Da. Rolling process optimization of vanadium microalloyed automobile titanium alloy[J]. Iron Steel Vanadium Titanium, 2020, 41(3): 59-63. doi: 10.7513/j.issn.1004-7638.2020.03.009
    [4] Gan Wei, Xiang Junfeng, Huang Fang. Effect of forging temperature on properties of new titanium alloys for automobiles[J]. Ordnance Material Science and Engineering, 2019,42(5):70−73. (甘伟, 项俊锋, 黄芳. 锻造温度对汽车用新型钛合金性能的影响[J]. 兵器材料科学与工程, 2019,42(5):70−73.

    Gan Wei, Xiang Junfeng, Huang Fang. Effect of forging temperature on properties of new titanium alloys for automobiles [J]. Ordnance Material Science and Engineering, 2019, 42(5): 70-73.
    [5] Song Wei. Optimization of casting process for automobile titanium alloy air valves[J]. Hot Working Technology, 2018,47(7):102−104,111. (宋纬. 汽车钛合金气阀的铸造工艺优化[J]. 热加工工艺, 2018,47(7):102−104,111.

    Song Wei. Optimization of casting process for automobile titanium alloy air valves[J]. Hot Working Technology, 2018, 47(7): 102-104, 111.
    [6] Wang Hongguang. Influence of forging temperature on performance of a new type niobium-containing titanium alloy bar used in car[J]. Forging & Stamping Technology, 2018,43(8):13−16. (王洪广. 锻造温度对新型含铌汽车钛合金棒材性能的影响[J]. 锻压技术, 2018,43(8):13−16.

    Wang Hongguang. Influence of forging temperature on performance of a new type niobium-containing titanium alloy bar used in car[J]. Forging & Stamping Technology, 2018, 43(8): 13-16.
    [7] Zhang Huifang. Preparation of Mo alloy coating on titanium alloy used in cars by double glow plasma alloying process and its friction and wear performance[J]. Materials Protection, 2017,50(6):88−90. (张慧芳. 汽车用钛合金表面双辉等离子Mo合金化层的制备及其摩擦磨损性能[J]. 材料保护, 2017,50(6):88−90.

    Zhang Huifang. Preparation of Mo alloy coating on titanium alloy used in cars by double glow plasma alloying process and its friction and wear performance[J]. Materials Protection, 2017, 50(6): 88-90.
    [8] Ren Lihong, Xu Ying. Application of titanium alloy 3D printing technology in automobile engine parts manufacturing[J]. Internal Combustion Engine & Parts, 2021,(2):213−214. (任丽宏, 徐英. 钛合金3D打印技术在汽车发动机零部件制作中的应用[J]. 内燃机与配件, 2021,(2):213−214.

    Ren Lihong, Xu Ying. Application of titanium alloy 3D printing technology in automobile engine parts manufacturing[J]. Internal Combustion Engine & Parts, 2021(2): 213-214.
    [9] Jia Weiju, Zeng Weidong, Duan Fengchuan, et al. Study on fatigue crack propagation behavior of low cost titanium alloy Ti8LC[J]. Rare Metal Materials and Engineering, 2009,38(12):2171−2174. (贾蔚菊, 曾卫东, 段风川, 等. Ti8LC低成本钛合金疲劳裂纹扩展行为研究[J]. 稀有金属材料与工程, 2009,38(12):2171−2174. doi: 10.3321/j.issn:1002-185X.2009.12.022

    Jia Weiju, Zeng Weidong, Duan Fengchuan, et al. Study on fatigue crack propagation behavior of low cost titanium alloy Ti8 LC[J]. Rare Metal Materials and Engineering, 2009, 38(12): 2171-2174. doi: 10.3321/j.issn:1002-185X.2009.12.022
    [10] Lv Yuting, Nie Bin, Liu Guohao, et al. Effect of friction stir processing (FSP) tool on microstructures and mechanical properties of NiAl bronze alloy[J]. Surface Technology, 2019,48(12):102−107. (吕玉廷, 聂彬, 刘国浩, 等. 搅拌摩擦加工工具对镍铝青铜合金显微组织和机械性能的影响[J]. 表面技术, 2019,48(12):102−107.

    Lv Yuting, Nie Bin, Liu Guohao, et al. Effect of friction stir processing (FSP) tool on microstructures and mechanical properties of NiAl bronze alloy[J]. Surface Technology, 2019, 48(12): 102-107.
    [11] Shi Qingyu, Cao Xiong, Li Jiyuan, et al. Improved mechanical properties in friction stir processed carbon fiber reinforced aluminum composites[J]. Journal of Tsinghua University(Science and Technology), 2017,57(8):792−797. (史清宇, 曹雄, 李积元, 等. FSP制备碳纤维增强铝基复合材料的强韧化机理[J]. 清华大学学报(自然科学版), 2017,57(8):792−797.

    Shi Qingyu, Cao Xiong, Li Jiyuan, et al. Improved mechanical properties in friction stir processed carbon fiber reinforced aluminum composites[J]. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 792-797.
    [12] Wang Saixiang, Zhang Datong. Microstructure and mechanical properties of frictional stirring processed (FSP) MB8 magnesium alloy[J]. Special Casting & Nonferrous Alloys, 2011,31(1):83−86. (王赛香, 张大童. 搅拌摩擦加工MB8镁合金的组织与力学性能分析[J]. 特种铸造及有色合金, 2011,31(1):83−86. doi: 10.3870/tzzz.2011.01.027

    Wang Saixiang, Zhang Datong. Microstructure and mechanical properties of frictional stirring processed (FSP) MB8 magnesium alloy[J]. Special Casting & Nonferrous Alloys, 2011, 31(1): 83-86. doi: 10.3870/tzzz.2011.01.027
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  11
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回